Suppr超能文献

烃 stapling 对合成抗菌肽膜相互作用的影响。

Influence of hydrocarbon-stapling on membrane interactions of synthetic antimicrobial peptides.

机构信息

Division of Molecular Medicine, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.

Division of Molecular Medicine, Research Institute, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.

出版信息

Bioorg Med Chem. 2018 Mar 15;26(6):1189-1196. doi: 10.1016/j.bmc.2017.10.020. Epub 2017 Oct 21.

Abstract

Cyclization has been recognized as a valuable technique for increasing the efficacy of small molecule and peptide therapeutics. Here we report the application of a hydrocarbon staple to a rationally-designed cationic antimicrobial peptide (CAP) that acquires increased membrane targeting and interaction vs. its linear counterpart. The previously-described CAP, 6K-F17 (KKKKKK-AAFAAWAAFAA-NH) was used as the backbone for incorporation of an i to i + 4 helical hydrocarbon staple through olefin ring closing metathesis. Stapled versions of 6K-F17 showed an increase in non-selective membrane interaction, where the staple itself enhances the degree of membrane interaction and rate of cell death while maintaining high potency against bacterial membranes. However, the higher averaged hydrophobicity imparted by the staple also significantly increases toxicity to mammalian cells. This deleterious effect is countered through stepwise reduction of the stapled 6K-F17's backbone hydrophobicity through polar amino acid substitutions. Circular dichroism assessment of secondary structure in various bacterial membrane mimetics reveals that a helical structure may improve - but is not an absolute requirement for - antimicrobial activity of 6K-F17. Further, phosphorus-31 static solid state NMR spectra revealed that both non-toxic stapled and linear peptides bind bacterial membranes in a similar manner that does not involve a detergent-like mechanism of lipid removal. The overall results suggest that the technique of hydrocarbon stapling can be readily applied to membrane-interactive CAPs to modulate how they interact and target biological membranes.

摘要

环化已被公认为提高小分子和肽类治疗药物疗效的一种有价值的技术。在这里,我们报告了一种烃 stapler 在合理设计的阳离子抗菌肽 (CAP) 中的应用,该 CAP 相对于其线性对应物获得了增强的膜靶向和相互作用。先前描述的 CAP,6K-F17(KKKKKK-AAFAAWAAFAA-NH)被用作通过烯烃环 closing metathesis 引入 i 到 i+4 螺旋烃 stapler 的骨架。6K-F17 的 stapled 版本显示出非选择性膜相互作用的增加,其中 stapler 本身增强了膜相互作用的程度和细胞死亡的速度,同时保持对细菌膜的高效力。然而,stapler 赋予的更高平均疏水性也显著增加了对哺乳动物细胞的毒性。这种有害影响通过逐步降低 stapled 6K-F17 的骨架疏水性来抵消,通过极性氨基酸取代。各种细菌膜模拟物的圆二色性评估揭示了螺旋结构可能改善 - 但不是 6K-F17 抗菌活性的绝对要求。此外,磷-31 静态固态 NMR 光谱表明,非毒性 stapled 和线性肽以相似的方式结合细菌膜,不涉及去除脂质的去污剂样机制。总体结果表明,烃 stapling 技术可以很容易地应用于膜相互作用的 CAP,以调节它们的相互作用和靶向生物膜的方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验