Suppr超能文献

通过 mitoferrin-1 对金属离子转运的重建、功能剖析和突变分析。

reconstitution, functional dissection, and mutational analysis of metal ion transport by mitoferrin-1.

机构信息

From the Unit on Structural and Chemical Biology of Membrane Proteins, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.

From the Unit on Structural and Chemical Biology of Membrane Proteins, Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892

出版信息

J Biol Chem. 2018 Mar 9;293(10):3819-3828. doi: 10.1074/jbc.M117.817478. Epub 2018 Jan 5.

Abstract

Iron is universally important to cellular metabolism, and mitoferrin-1 and -2 have been proposed to be the iron importers of mitochondria, the cell's assembly plant of heme and iron-sulfur clusters. These iron-containing prosthetic groups are critical for a host of physiological processes ranging from oxygen transport and energy consumption to maintaining protein structural integrity. Mitoferrin-1 (Mfrn1) belongs to the mitochondrial carrier (MC) family and is atypical given its putative metallic cargo; most MCs transport nucleotides, amino acids, or other small- to medium-size metabolites. Despite the clear importance of Mfrn1 in iron utilization, its transport activity has not been demonstrated unambiguously. To bridge this knowledge gap, we have purified recombinant Mfrn1 under non-denaturing conditions and probed its metal ion-binding and transport functions. Isothermal titration calorimetry indicates that Mfrn1 has micromolar affinity for Fe(II), Mn(II), Co(II), and Ni(II). Mfrn1 was incorporated into defined liposomes, and iron transport was reconstituted , demonstrating that Mfrn1 can transport iron. Mfrn1 can also transport manganese, cobalt, copper, and zinc but discriminates against nickel. Experiments with candidate ligands for cellular labile iron reveal that Mfrn1 transports free iron and not a chelated iron complex and selects against alkali divalent ions. Extensive mutagenesis identified multiple residues that are crucial for metal binding, transport activity, or both. There is a clear abundance of residues with side chains that can coordinate first-row transition metal ions, suggesting that these could form primary or auxiliary metal-binding sites during the transport process.

摘要

铁对细胞代谢至关重要,而 mitoferrin-1 和 -2 被认为是线粒体的铁摄取体,线粒体是细胞合成血红素和铁硫簇的工厂。这些含铁的辅基对于一系列生理过程至关重要,从氧气运输和能量消耗到维持蛋白质结构完整性。Mitoferrin-1 (Mfrn1) 属于线粒体载体 (MC) 家族,因其假定的金属货物而被认为是非典型的;大多数 MCs 运输核苷酸、氨基酸或其他中小分子量代谢物。尽管 Mfrn1 在铁利用中非常重要,但它的运输活性尚未得到明确证明。为了弥合这一知识差距,我们在非变性条件下纯化了重组 Mfrn1,并探测了其金属离子结合和运输功能。等温热滴定法表明,Mfrn1 对 Fe(II)、Mn(II)、Co(II)和 Ni(II)具有微摩尔亲和力。Mfrn1 被整合到定义明确的脂质体中,并重新构建了铁运输,证明 Mfrn1 可以运输铁。Mfrn1 还可以运输锰、钴、铜和锌,但对镍有选择性。用候选细胞不稳定铁配体进行的实验表明,Mfrn1 运输游离铁而不是螯合铁复合物,并对碱二价离子有选择性。广泛的突变分析确定了多个对金属结合、运输活性或两者都至关重要的残基。有许多侧链可以配位第一行过渡金属离子的残基,这表明这些残基在运输过程中可以形成主要或辅助金属结合位点。

相似文献

1
reconstitution, functional dissection, and mutational analysis of metal ion transport by mitoferrin-1.
J Biol Chem. 2018 Mar 9;293(10):3819-3828. doi: 10.1074/jbc.M117.817478. Epub 2018 Jan 5.
2
The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell proliferation in mice.
J Biol Chem. 2020 Aug 7;295(32):11002-11020. doi: 10.1074/jbc.RA120.013229. Epub 2020 Jun 9.
3
Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16263-8. doi: 10.1073/pnas.0904519106. Epub 2009 Sep 4.
4
The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane.
Biochim Biophys Acta. 2009 May;1788(5):1044-50. doi: 10.1016/j.bbamem.2009.03.004. Epub 2009 Mar 11.
5
The mitochondrial carrier Rim2 co-imports pyrimidine nucleotides and iron.
Biochem J. 2013 Oct 1;455(1):57-65. doi: 10.1042/BJ20130144.
6
Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria.
Exp Hematol. 2011 Jul;39(7):784-94. doi: 10.1016/j.exphem.2011.05.003. Epub 2011 May 11.
8
In vitro characterization of a bacterial manganese uptake regulator of the fur superfamily.
Biochemistry. 2006 Feb 28;45(8):2686-98. doi: 10.1021/bi052081n.
9
Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria.
J Biol Chem. 1999 Jul 2;274(27):18989-96. doi: 10.1074/jbc.274.27.18989.
10
Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc.
Am J Physiol Cell Physiol. 2014 Mar 1;306(5):C450-9. doi: 10.1152/ajpcell.00348.2013. Epub 2013 Dec 4.

引用本文的文献

1
In vitro reconstitution of transition metal transporters.
J Biol Chem. 2024 Aug;300(8):107589. doi: 10.1016/j.jbc.2024.107589. Epub 2024 Jul 19.
2
Metal Uptake by Mitochondrial Carrier Family Proteins Using Lactococcus lactis.
Methods Mol Biol. 2024;2839:99-110. doi: 10.1007/978-1-0716-4043-2_6.
3
Iron imbalance in neurodegeneration.
Mol Psychiatry. 2024 Apr;29(4):1139-1152. doi: 10.1038/s41380-023-02399-z. Epub 2024 Jan 12.
4
Iron and Targeted Iron Therapy in Alzheimer's Disease.
Int J Mol Sci. 2023 Nov 15;24(22):16353. doi: 10.3390/ijms242216353.
5
Mechanisms controlling cellular and systemic iron homeostasis.
Nat Rev Mol Cell Biol. 2024 Feb;25(2):133-155. doi: 10.1038/s41580-023-00648-1. Epub 2023 Oct 2.
6
Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects.
Biomolecules. 2023 Jul 27;13(8):1172. doi: 10.3390/biom13081172.
7
Structures and coordination chemistry of transporters involved in manganese and iron homeostasis.
Biochem Soc Trans. 2023 Jun 28;51(3):897-923. doi: 10.1042/BST20210699.
10
Mitochondrial copper in human genetic disorders.
Trends Endocrinol Metab. 2023 Jan;34(1):21-33. doi: 10.1016/j.tem.2022.11.001. Epub 2022 Nov 23.

本文引用的文献

1
Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways.
J Biol Chem. 2017 Aug 4;292(31):12744-12753. doi: 10.1074/jbc.R117.789537. Epub 2017 Jun 14.
2
Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions.
Nat Protoc. 2016 May;11(5):882-94. doi: 10.1038/nprot.2016.044. Epub 2016 Apr 7.
3
Mitochondrial iron overload: causes and consequences.
Curr Opin Genet Dev. 2016 Jun;38:31-37. doi: 10.1016/j.gde.2016.02.004. Epub 2016 Mar 25.
4
Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae.
Open Biol. 2016 Jan;6(1):150223. doi: 10.1098/rsob.150223.
7
Substrate-modulated ADP/ATP-transporter dynamics revealed by NMR relaxation dispersion.
Nat Struct Mol Biol. 2015 Aug;22(8):636-41. doi: 10.1038/nsmb.3059. Epub 2015 Jul 13.
8
Molecular Basis of MgATP Selectivity of the Mitochondrial SCaMC Carrier.
Structure. 2015 Aug 4;23(8):1394-1403. doi: 10.1016/j.str.2015.06.004. Epub 2015 Jul 9.
9
Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier.
Biochim Biophys Acta. 2015 Oct;1847(10):1245-53. doi: 10.1016/j.bbabio.2015.07.002. Epub 2015 Jul 9.
10
Compartmentalization of iron between mitochondria and the cytosol and its regulation.
Eur J Cell Biol. 2015 Jul-Sep;94(7-9):292-308. doi: 10.1016/j.ejcb.2015.05.003. Epub 2015 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验