Suppr超能文献

蛋白质中的甲硫氨酸:它不再仅仅用于蛋白质起始合成。

Methionine in Proteins: It's Not Just for Protein Initiation Anymore.

作者信息

Lim Jung Mi, Kim Geumsoo, Levine Rodney L

机构信息

Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, MD, 20892-8012, USA.

NIH, Bldg 50, Room 2351, Bethesda, MD, 20892-8012, USA.

出版信息

Neurochem Res. 2019 Jan;44(1):247-257. doi: 10.1007/s11064-017-2460-0. Epub 2018 Jan 11.

Abstract

Methionine in proteins is often thought to be a generic hydrophobic residue, functionally replaceable with another hydrophobic residue such as valine or leucine. This is not the case, and the reason is that methionine contains sulfur that confers special properties on methionine. The sulfur can be oxidized, converting methionine to methionine sulfoxide, and ubiquitous methionine sulfoxide reductases can reduce the sulfoxide back to methionine. This redox cycle enables methionine residues to provide a catalytically efficient antioxidant defense by reacting with oxidizing species. The cycle also constitutes a reversible post-translational covalent modification analogous to phosphorylation. As with phosphorylation, enzymatically-mediated oxidation and reduction of specific methionine residues functions as a regulatory process in the cell. Methionine residues also form bonds with aromatic residues that contribute significantly to protein stability. Given these important functions, alteration of the methionine-methionine sulfoxide balance in proteins has been correlated with disease processes, including cardiovascular and neurodegenerative diseases. Methionine isn't just for protein initiation.

摘要

蛋白质中的甲硫氨酸通常被认为是一种普通的疏水残基,在功能上可被另一种疏水残基(如缬氨酸或亮氨酸)替代。但事实并非如此,原因是甲硫氨酸含有赋予其特殊性质的硫。硫可被氧化,将甲硫氨酸转化为甲硫氨酸亚砜,而普遍存在的甲硫氨酸亚砜还原酶可将亚砜还原回甲硫氨酸。这种氧化还原循环使甲硫氨酸残基能够通过与氧化物质反应提供催化效率高的抗氧化防御。该循环还构成了一种类似于磷酸化的可逆翻译后共价修饰。与磷酸化一样,酶介导的特定甲硫氨酸残基的氧化和还原在细胞中起到调节作用。甲硫氨酸残基还与芳香族残基形成键,这对蛋白质稳定性有显著贡献。鉴于这些重要功能,蛋白质中甲硫氨酸 - 甲硫氨酸亚砜平衡的改变已与包括心血管疾病和神经退行性疾病在内的疾病过程相关联。甲硫氨酸不仅仅用于蛋白质起始。

相似文献

1
Methionine in Proteins: It's Not Just for Protein Initiation Anymore.
Neurochem Res. 2019 Jan;44(1):247-257. doi: 10.1007/s11064-017-2460-0. Epub 2018 Jan 11.
2
Oxidation of methionine in proteins: roles in antioxidant defense and cellular regulation.
IUBMB Life. 2000 Oct-Nov;50(4-5):301-7. doi: 10.1080/713803735.
3
Genetic regulation of longevity and age-associated diseases through the methionine sulfoxide reductase system.
Biochim Biophys Acta Mol Basis Dis. 2019 Jul 1;1865(7):1756-1762. doi: 10.1016/j.bbadis.2018.11.016. Epub 2018 Nov 24.
4
Methionine residues may protect proteins from critical oxidative damage.
Mech Ageing Dev. 1999 Mar 15;107(3):323-32. doi: 10.1016/s0047-6374(98)00152-3.
5
Regulated methionine oxidation by monooxygenases.
Free Radic Biol Med. 2017 Aug;109:141-155. doi: 10.1016/j.freeradbiomed.2017.02.010. Epub 2017 Feb 14.
6
Methionine oxidation in bacteria: A reversible post-translational modification.
Mol Microbiol. 2023 Feb;119(2):143-150. doi: 10.1111/mmi.15000. Epub 2022 Nov 22.
7
Stereospecific oxidation of calmodulin by methionine sulfoxide reductase A.
Free Radic Biol Med. 2013 Aug;61:257-64. doi: 10.1016/j.freeradbiomed.2013.04.004. Epub 2013 Apr 11.
9
Activity of the yeast cytoplasmic Hsp70 nucleotide-exchange factor Fes1 is regulated by reversible methionine oxidation.
J Biol Chem. 2020 Jan 10;295(2):552-569. doi: 10.1074/jbc.RA119.010125. Epub 2019 Dec 5.
10
Regulation of protein function by reversible methionine oxidation and the role of selenoprotein MsrB1.
Antioxid Redox Signal. 2015 Oct 1;23(10):814-22. doi: 10.1089/ars.2015.6385. Epub 2015 Jul 16.

引用本文的文献

1
Assessment of Hydroxyl Radical Reactivity in Sulfur-Containing Amino Acid Models Under Acidic pH.
Int J Mol Sci. 2025 Jul 25;26(15):7203. doi: 10.3390/ijms26157203.
3
Oxidative modulation of Piezo1 channels.
Redox Biol. 2025 Jul 31;86:103797. doi: 10.1016/j.redox.2025.103797.
4
Role of Redox-Induced Protein Modifications in Spermatozoa in Health and Disease.
Antioxidants (Basel). 2025 Jun 12;14(6):720. doi: 10.3390/antiox14060720.
5
The divergent intron-containing actin in sponge morphogenetic processes.
NAR Genom Bioinform. 2025 Jun 4;7(2):lqaf071. doi: 10.1093/nargab/lqaf071. eCollection 2025 Jun.
6
Fibrinogen Oxidation and Thrombosis: Shaping Structure and Function.
Antioxidants (Basel). 2025 Mar 26;14(4):390. doi: 10.3390/antiox14040390.
9
Comparing the Extent of Methionine Oxidation in the Prion and Native Conformations of PrP.
ACS Omega. 2025 Jan 3;10(1):1320-1330. doi: 10.1021/acsomega.4c08892. eCollection 2025 Jan 14.
10

本文引用的文献

1
Direct interaction between selenoprotein R and Aβ42.
Biochem Biophys Res Commun. 2017 Aug 5;489(4):509-514. doi: 10.1016/j.bbrc.2017.05.182. Epub 2017 Jun 1.
3
Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress.
J Biol Chem. 2016 Nov 4;291(45):23366-23373. doi: 10.1074/jbc.M116.747881. Epub 2016 Sep 7.
4
Oxidation increases the strength of the methionine-aromatic interaction.
Nat Chem Biol. 2016 Oct;12(10):860-6. doi: 10.1038/nchembio.2159. Epub 2016 Aug 22.
5
Stress Response and Adaptation Mediated by Amino Acid Misincorporation during Protein Synthesis.
Adv Nutr. 2016 Jul 15;7(4):773S-9S. doi: 10.3945/an.115.010991. Print 2016 Jul.
6
Methionine sulfoxide reductase A affects β-amyloid solubility and mitochondrial function in a mouse model of Alzheimer's disease.
Am J Physiol Endocrinol Metab. 2016 Mar 15;310(6):E388-93. doi: 10.1152/ajpendo.00453.2015. Epub 2016 Jan 19.
7
Identification of activators of methionine sulfoxide reductases A and B.
Biochem Biophys Res Commun. 2016 Jan 22;469(4):863-7. doi: 10.1016/j.bbrc.2015.12.077. Epub 2015 Dec 21.
9
Hepatic overexpression of methionine sulfoxide reductase A reduces atherosclerosis in apolipoprotein E-deficient mice.
J Lipid Res. 2015 Oct;56(10):1891-900. doi: 10.1194/jlr.M058776. Epub 2015 Aug 28.
10
Methionine sulfoxide reductase A (MsrA) associated with bipolar I disorder and executive functions in A Han Chinese population.
J Affect Disord. 2015 Sep 15;184:235-8. doi: 10.1016/j.jad.2015.06.004. Epub 2015 Jun 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验