Wilson Corinne S, Mongin Alexander A
Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States.
Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation.
Neurosci Lett. 2019 Jan 10;689:33-44. doi: 10.1016/j.neulet.2018.01.012. Epub 2018 Jan 9.
It is well known that the electrical signaling in neuronal networks is modulated by chloride (Cl) fluxes via the inhibitory GABA and glycine receptors. Here, we discuss the putative contribution of Cl fluxes and intracellular Cl to other forms of information transfer in the CNS, namely the bidirectional communication between neurons and astrocytes. The manuscript (i) summarizes the generic functions of Cl in cellular physiology, (ii) recaps molecular identities and properties of Cl transporters and channels in neurons and astrocytes, and (iii) analyzes emerging studies implicating Cl in the modulation of neuroglial communication. The existing literature suggests that neurons can alter astrocytic Cl levels in a number of ways; via (a) the release of neurotransmitters and activation of glial transporters that have intrinsic Cl conductance, (b) the metabotropic receptor-driven changes in activity of the electroneutral cation-Cl cotransporter NKCC1, and (c) the transient, activity-dependent changes in glial cell volume which open the volume-regulated Cl/anion channel VRAC. Reciprocally, astrocytes are thought to alter neuronal [Cl] through either (a) VRAC-mediated release of the inhibitory gliotransmitters, GABA and taurine, which open neuronal GABA and glycine receptor/Cl channels, or (b) the gliotransmitter-driven stimulation of NKCC1. The most important recent developments in this area are the identification of the molecular composition and functional heterogeneity of brain VRAC channels, and the discovery of a new cytosolic [Cl] sensor - the Wnk family protein kinases. With new work in the field, our understanding of the role of Cl in information processing within the CNS is expected to be significantly updated.
众所周知,神经网络中的电信号传导是由氯离子(Cl)通过抑制性γ-氨基丁酸(GABA)和甘氨酸受体的通量来调节的。在此,我们讨论Cl通量和细胞内Cl对中枢神经系统(CNS)中其他形式信息传递的假定贡献,即神经元与星形胶质细胞之间的双向通信。本文(i)总结了Cl在细胞生理学中的一般功能,(ii)回顾了神经元和星形胶质细胞中Cl转运体和通道的分子身份及特性,(iii)分析了涉及Cl对神经胶质细胞通信调节作用的新兴研究。现有文献表明,神经元可以通过多种方式改变星形胶质细胞的Cl水平;通过(a)释放神经递质并激活具有内在Cl电导的胶质转运体,(b)代谢型受体驱动的电中性阳离子-Cl共转运体NKCC1活性变化,以及(c)胶质细胞体积的瞬时、活性依赖性变化,从而打开体积调节性Cl/阴离子通道VRAC。相反,星形胶质细胞被认为可以通过以下两种方式改变神经元的[Cl]:(a)VRAC介导的抑制性神经胶质递质GABA和牛磺酸的释放,从而打开神经元的GABA和甘氨酸受体/Cl通道,或者(b)神经胶质递质驱动的NKCC1刺激。该领域最近最重要的进展是确定了脑VRAC通道的分子组成和功能异质性,以及发现了一种新的胞质[Cl]传感器——Wnk家族蛋白激酶。随着该领域的新研究工作开展,我们对Cl在CNS信息处理中作用的理解有望得到显著更新。