Suppr超能文献

自噬在调控酵母寿命中的作用。

The role of autophagy in the regulation of yeast life span.

机构信息

Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.

Department of Biology, Orentreich Foundation for the Advancement of Science, Cold Spring, New York.

出版信息

Ann N Y Acad Sci. 2018 Apr;1418(1):31-43. doi: 10.1111/nyas.13549. Epub 2018 Jan 24.

Abstract

The goal of the aging field is to develop novel therapeutic interventions that extend human health span and reduce the burden of age-related disease. While organismal aging is a complex, multifactorial process, a popular theory is that cellular aging is a significant contributor to the progressive decline inherent to all multicellular organisms. To explore the molecular determinants that drive cellular aging, as well as how to retard them, researchers have utilized the highly genetically tractable budding yeast Saccharomyces cerevisiae. Indeed, every intervention known to extend both cellular and organismal health span was identified in yeast, underlining the power of this approach. Importantly, a growing body of work has implicated the process of autophagy as playing a critical role in the delay of aging. This review summarizes recent reports that have identified a role for autophagy, or autophagy factors in the extension of yeast life span. These studies demonstrate (1) that yeast remains an invaluable tool for the identification and characterization of conserved mechanisms that promote cellular longevity and are likely to be relevant to humans, and (2) that the process of autophagy has been implicated in nearly all known longevity-promoting manipulations and thus represents an ideal target for interventions aimed at improving human health span.

摘要

衰老领域的目标是开发新的治疗干预措施,延长人类健康寿命并减少与年龄相关疾病的负担。虽然机体衰老过程是一个复杂的、多因素的过程,但有一个流行的理论认为,细胞衰老是所有多细胞生物固有进行性衰退的一个重要贡献因素。为了探索驱动细胞衰老的分子决定因素,以及如何延缓细胞衰老,研究人员利用了高度可遗传的芽殖酵母酿酒酵母(Saccharomyces cerevisiae)。事实上,在酵母中发现了已知能延长细胞和机体健康寿命的每一种干预措施,这突显了这种方法的强大。重要的是,越来越多的工作表明自噬过程在延缓衰老中起着关键作用。本综述总结了最近的研究报告,这些报告确定了自噬或自噬因子在延长酵母寿命中的作用。这些研究表明:(1) 酵母仍然是鉴定和描述促进细胞长寿的保守机制的宝贵工具,这些机制很可能与人类有关;(2) 自噬过程几乎涉及所有已知的促进长寿的操作,因此代表了改善人类健康寿命的干预措施的理想目标。

相似文献

1
The role of autophagy in the regulation of yeast life span.
Ann N Y Acad Sci. 2018 Apr;1418(1):31-43. doi: 10.1111/nyas.13549. Epub 2018 Jan 24.
2
Is Gcn4-induced autophagy the ultimate downstream mechanism by which hormesis extends yeast replicative lifespan?
Curr Genet. 2019 Jun;65(3):717-720. doi: 10.1007/s00294-019-00936-4. Epub 2019 Jan 23.
3
A life-span extending form of autophagy employs the vacuole-vacuole fusion machinery.
Autophagy. 2008 Oct;4(7):874-86. doi: 10.4161/auto.6556. Epub 2008 Oct 8.
4
Yeast at the Forefront of Research on Ageing and Age-Related Diseases.
Prog Mol Subcell Biol. 2019;58:217-242. doi: 10.1007/978-3-030-13035-0_9.
5
Autophagy is required for extension of yeast chronological life span by rapamycin.
Autophagy. 2009 Aug;5(6):847-9. doi: 10.4161/auto.8824. Epub 2009 Aug 23.
7
Methionine restriction for improving progeria: another autophagy-inducing anti-aging strategy?
Autophagy. 2019 Mar;15(3):558-559. doi: 10.1080/15548627.2018.1533059. Epub 2018 Oct 18.
8
The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review.
Mech Ageing Dev. 2000 Dec 1;120(1-3):1-22. doi: 10.1016/s0047-6374(00)00182-2.
9
Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification.
PLoS Genet. 2014 May 1;10(5):e1004347. doi: 10.1371/journal.pgen.1004347. eCollection 2014 May.
10
Yeast replicative aging: a paradigm for defining conserved longevity interventions.
FEMS Yeast Res. 2014 Feb;14(1):148-59. doi: 10.1111/1567-1364.12104. Epub 2013 Oct 30.

引用本文的文献

3
Sis2 regulates yeast replicative lifespan in a dose-dependent manner.
Nat Commun. 2023 Nov 27;14(1):7719. doi: 10.1038/s41467-023-43233-y.
4
Vacuolar proteases and autophagy in phytopathogenic fungi: A review.
Front Fungal Biol. 2022 Oct 26;3:948477. doi: 10.3389/ffunb.2022.948477. eCollection 2022.
5
The Effect of Calorie Restriction on Protein Quality Control in Yeast.
Biomolecules. 2023 May 15;13(5):841. doi: 10.3390/biom13050841.
6
Autophagy and longevity: Evolutionary hints from hyper-longevous mammals.
Front Endocrinol (Lausanne). 2022 Dec 20;13:1085522. doi: 10.3389/fendo.2022.1085522. eCollection 2022.
7
A genomic approach to analyze the cold adaptation of yeasts isolated from Italian Alps.
Front Microbiol. 2022 Nov 8;13:1026102. doi: 10.3389/fmicb.2022.1026102. eCollection 2022.
8
Distinct structural groups of histone H3 and H4 residues have divergent effects on chronological lifespan in Saccharomyces cerevisiae.
PLoS One. 2022 May 27;17(5):e0268760. doi: 10.1371/journal.pone.0268760. eCollection 2022.
9
Blocking Mitophagy Does Not Significantly Improve Fuel Ethanol Production in Bioethanol Yeast Saccharomyces cerevisiae.
Appl Environ Microbiol. 2022 Mar 8;88(5):e0206821. doi: 10.1128/aem.02068-21. Epub 2022 Jan 19.
10
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress.
Microorganisms. 2021 Oct 15;9(10):2152. doi: 10.3390/microorganisms9102152.

本文引用的文献

1
The integrated stress response in budding yeast lifespan extension.
Microb Cell. 2017 Oct 24;4(11):368-375. doi: 10.15698/mic2017.11.597.
2
The yeast protein kinase Sch9 adjusts V-ATPase assembly/disassembly to control pH homeostasis and longevity in response to glucose availability.
PLoS Genet. 2017 Jun 12;13(6):e1006835. doi: 10.1371/journal.pgen.1006835. eCollection 2017 Jun.
3
Autophagy: machinery and regulation.
Microb Cell. 2016 Dec 1;3(12):588-596. doi: 10.15698/mic2016.12.546.
6
Pleiotropic responses to methionine restriction.
Exp Gerontol. 2017 Aug;94:83-88. doi: 10.1016/j.exger.2017.01.012. Epub 2017 Jan 17.
7
Caloric restriction alleviates alpha-synuclein toxicity in aged yeast cells by controlling the opposite roles of Tor1 and Sir2 on autophagy.
Mech Ageing Dev. 2017 Jan;161(Pt B):270-276. doi: 10.1016/j.mad.2016.04.006. Epub 2016 Apr 21.
10
Cellular senescence in aging and age-related disease: from mechanisms to therapy.
Nat Med. 2015 Dec;21(12):1424-35. doi: 10.1038/nm.4000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验