Suppr超能文献

酵母出芽过程中核糖体排队的程度。

The extent of ribosome queuing in budding yeast.

机构信息

Biomedical Engineering Dept., Tel Aviv University, Tel Aviv, Israel.

The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

出版信息

PLoS Comput Biol. 2018 Jan 29;14(1):e1005951. doi: 10.1371/journal.pcbi.1005951. eCollection 2018 Jan.

Abstract

Ribosome queuing is a fundamental phenomenon suggested to be related to topics such as genome evolution, synthetic biology, gene expression regulation, intracellular biophysics, and more. However, this phenomenon hasn't been quantified yet at a genomic level. Nevertheless, methodologies for studying translation (e.g. ribosome footprints) are usually calibrated to capture only single ribosome protected footprints (mRPFs) and thus limited in their ability to detect ribosome queuing. On the other hand, most of the models in the field assume and analyze a certain level of queuing. Here we present an experimental-computational approach for studying ribosome queuing based on sequencing of RNA footprints extracted from pairs of ribosomes (dRPFs) using a modified ribosome profiling protocol. We combine our approach with traditional ribosome profiling to generate a detailed profile of ribosome traffic. The data are analyzed using computational models of translation dynamics. The approach was implemented on the Saccharomyces cerevisiae transcriptome. Our data shows that ribosome queuing is more frequent than previously thought: the measured ratio of ribosomes within dRPFs to mRPFs is 0.2-0.35, suggesting that at least one to five translating ribosomes is in a traffic jam; these queued ribosomes cannot be captured by traditional methods. We found that specific regions are enriched with queued ribosomes, such as the 5'-end of ORFs, and regions upstream to mRPF peaks, among others. While queuing is related to higher density of ribosomes on the transcript (characteristic of highly translated genes), we report cases where traffic jams are relatively more severe in lowly expressed genes and possibly even selected for. In addition, our analysis demonstrates that higher adaptation of the coding region to the intracellular tRNA levels is associated with lower queuing levels. Our analysis also suggests that the Saccharomyces cerevisiae transcriptome undergoes selection for eliminating traffic jams. Thus, our proposed approach is an essential tool for high resolution analysis of ribosome traffic during mRNA translation and understanding its evolution.

摘要

核糖体排队是一种基本现象,与基因组进化、合成生物学、基因表达调控、细胞内生物物理学等多个领域相关。然而,这种现象在基因组水平上尚未被量化。尽管如此,用于研究翻译的方法(例如核糖体足迹)通常被校准为仅捕获单个核糖体保护的足迹(mRPFs),因此在检测核糖体排队方面的能力有限。另一方面,该领域的大多数模型都假设并分析了一定程度的排队。在这里,我们提出了一种基于从配对核糖体(dRPFs)中提取的 RNA 足迹进行测序的实验计算方法来研究核糖体排队,该方法使用了改良的核糖体分析方案。我们将我们的方法与传统的核糖体分析相结合,生成了核糖体流量的详细图谱。数据使用翻译动力学的计算模型进行分析。该方法在酿酒酵母转录组上进行了实施。我们的数据表明,核糖体排队比以前想象的更为频繁:在 dRPFs 中测量的核糖体与 mRPFs 的比率为 0.2-0.35,这表明至少有一个到五个正在翻译的核糖体处于交通堵塞状态;这些排队的核糖体无法通过传统方法捕获。我们发现,特定区域富含排队的核糖体,例如 ORF 的 5'端和 mRPF 峰上游的区域等。虽然排队与转录本上核糖体的密度更高(高度翻译基因的特征)有关,但我们报告了在低表达基因中,交通堵塞相对更为严重的情况,甚至可能是选择的结果。此外,我们的分析表明,编码区对细胞内 tRNA 水平的更高适应性与更低的排队水平相关。我们的分析还表明,酿酒酵母转录本经历了消除交通堵塞的选择。因此,我们提出的方法是分析 mRNA 翻译过程中核糖体流量及其进化的高分辨率分析的重要工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81ae/5805374/828a668c3d62/pcbi.1005951.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验