Institute of Electronics, Microelectronics, and Nanotechnology, CNRS, University of Lille, Villeneuve d'Ascq, France.
Process and Energy Department, Delft University of Technology, Delft, the Netherlands.
Nat Mater. 2018 May;17(5):464-470. doi: 10.1038/s41563-017-0016-y. Epub 2018 Feb 5.
Despite being ubiquitous in the fields of chemistry and biology, the ion-specific effects of electrolytes pose major challenges for researchers. A lack of understanding about ion-specific surface interactions has hampered the development and application of materials for (bio-)chemical sensor applications. Here, we show that scaling a silicon nanotransistor sensor down to ~25 nm provides a unique opportunity to understand and exploit ion-specific surface interactions, yielding a surface that is highly sensitive to cations and inert to pH. The unprecedented sensitivity of these devices to Na and divalent ions can be attributed to an overscreening effect via molecular dynamics. The surface potential of multi-ion solutions is well described by the sum of the electrochemical potentials of each cation, enabling selective measurements of a target ion concentration without requiring a selective organic layer. We use these features to construct a blood serum ionogram for Na, K, Ca and Mg, in an important step towards the development of a versatile, durable and mobile chemical or blood diagnostic tool.
尽管在化学和生物学领域无处不在,但电解质的离子特异性效应给研究人员带来了重大挑战。由于缺乏对离子特异性表面相互作用的了解,(生物)化学传感器应用的材料的开发和应用受到了阻碍。在这里,我们表明,将硅纳米晶体管传感器缩小到~25nm 提供了一个独特的机会来理解和利用离子特异性表面相互作用,从而产生对阳离子高度敏感且对 pH 不敏感的表面。这些器件对 Na 和二价离子的空前灵敏度可归因于通过分子动力学的超屏蔽效应。多离子溶液的表面电势可以很好地用每个阳离子的电化学势之和来描述,从而能够在不使用选择性有机层的情况下选择性地测量目标离子浓度。我们使用这些特性来构建 Na、K、Ca 和 Mg 的血清离子图,这是朝着开发通用、耐用和移动化学或血液诊断工具迈出的重要一步。