Suppr超能文献

利用核磁共振波谱进行高通量筛选以鉴定金属酶的强效和选择性抑制剂

HTS by NMR for the Identification of Potent and Selective Inhibitors of Metalloenzymes.

作者信息

Baggio Carlo, Cerofolini Linda, Fragai Marco, Luchinat Claudio, Pellecchia Maurizio

机构信息

Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, California 92521, United States.

Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.

出版信息

ACS Med Chem Lett. 2018 Jan 17;9(2):137-142. doi: 10.1021/acsmedchemlett.7b00483. eCollection 2018 Feb 8.

Abstract

We have recently proposed a novel drug discovery approach based on biophysical screening of focused positional scanning libraries in which each element of the library contained a common binding moiety for the given target or class of targets. In this Letter, we report on the implementation of this approach to target metal containing proteins. In our implementation, we first derived a focused positional scanning combinatorial library of peptide mimetics (of approximately 100,000 compounds) in which each element of the library contained the metal-chelating moiety hydroxamic acid at the C-terminal. Screening of this library by nuclear magnetic resonance spectroscopy in solution allowed the identification of a novel and selective compound series targeting MMP-12. The data supported that our general approach, perhaps applied using other metal chelating agents or other initial binding fragments, may result very effective in deriving novel and selective agents against metalloenzyme.

摘要

我们最近提出了一种基于聚焦位置扫描文库生物物理筛选的新型药物发现方法,其中文库的每个元素都包含针对给定靶点或靶点类别的共同结合部分。在本信函中,我们报告了将该方法应用于含金属蛋白靶点的情况。在我们的实施方案中,我们首先衍生了一个聚焦位置扫描组合文库(约100,000种化合物),其中文库的每个元素在C端都含有金属螯合部分异羟肟酸。通过溶液中的核磁共振光谱对该文库进行筛选,从而鉴定出了针对基质金属蛋白酶-12的新型选择性化合物系列。数据表明,我们的通用方法,或许使用其他金属螯合剂或其他初始结合片段来应用,可能在衍生针对金属酶的新型选择性药物方面非常有效。

相似文献

1
HTS by NMR for the Identification of Potent and Selective Inhibitors of Metalloenzymes.
ACS Med Chem Lett. 2018 Jan 17;9(2):137-142. doi: 10.1021/acsmedchemlett.7b00483. eCollection 2018 Feb 8.
2
High-Throughput Screening (HTS) by NMR Guided Identification of Novel Agents Targeting the Protein Docking Domain of YopH.
ChemMedChem. 2016 Apr 19;11(8):919-27. doi: 10.1002/cmdc.201500441. Epub 2015 Nov 23.
3
A Bioinorganic Approach to Fragment-Based Drug Discovery Targeting Metalloenzymes.
Acc Chem Res. 2017 Aug 15;50(8):2007-2016. doi: 10.1021/acs.accounts.7b00242. Epub 2017 Jul 17.
4
Enthalpy-Based Screening of Focused Combinatorial Libraries for the Identification of Potent and Selective Ligands.
ACS Chem Biol. 2017 Dec 15;12(12):2981-2989. doi: 10.1021/acschembio.7b00717. Epub 2017 Nov 2.
5
6
High-Throughput Screening by Nuclear Magnetic Resonance (HTS by NMR) for the Identification of PPIs Antagonists.
Curr Top Med Chem. 2015;15(20):2032-42. doi: 10.2174/1568026615666150519102459.
7
Mixture-Based Screening of Focused Combinatorial Libraries by NMR: Application to the Antiapoptotic Protein hMcl-1.
J Med Chem. 2023 Jul 27;66(14):10108-10118. doi: 10.1021/acs.jmedchem.3c01073. Epub 2023 Jul 18.
8
Medicinal chemistry of metal chelating fragments in metalloenzyme active sites: A perspective.
Eur J Med Chem. 2019 Mar 1;165:172-197. doi: 10.1016/j.ejmech.2019.01.018. Epub 2019 Jan 14.
10
Design of small molecule libraries for NMR screening and other applications in drug discovery.
Curr Top Med Chem. 2003;3(1):11-23. doi: 10.2174/1568026033392606.

引用本文的文献

1
Covalent Targeting of Histidine Residues with Aryl Fluorosulfates: Application to Mcl-1 BH3 Mimetics.
J Med Chem. 2024 Nov 28;67(22):20214-20223. doi: 10.1021/acs.jmedchem.4c01541. Epub 2024 Nov 12.
2
Histidine-Covalent Stapled Alpha-Helical Peptides Targeting hMcl-1.
J Med Chem. 2024 May 23;67(10):8172-8185. doi: 10.1021/acs.jmedchem.4c00277. Epub 2024 May 2.
3
Mixture-Based Screening of Focused Combinatorial Libraries by NMR: Application to the Antiapoptotic Protein hMcl-1.
J Med Chem. 2023 Jul 27;66(14):10108-10118. doi: 10.1021/acs.jmedchem.3c01073. Epub 2023 Jul 18.
4
Characterization of a Potent and Orally Bioavailable Lys-Covalent Inhibitor of Apoptosis Protein (IAP) Antagonist.
J Med Chem. 2023 Jun 22;66(12):8159-8169. doi: 10.1021/acs.jmedchem.3c00467. Epub 2023 Jun 1.
5
Matrix Metalloproteinases in Chronic Obstructive Pulmonary Disease.
Int J Mol Sci. 2023 Feb 14;24(4):3786. doi: 10.3390/ijms24043786.
6
Functionalized Hyaluronic Acid for "" Matrix Metalloproteinase Inhibition: A Bioactive Material to Treat the Dry Eye Sydrome.
ACS Macro Lett. 2022 Oct 18;11(10):1190-1194. doi: 10.1021/acsmacrolett.2c00455. Epub 2022 Sep 14.
7
NMR-Guided Design of Potent and Selective EphA4 Agonistic Ligands.
J Med Chem. 2021 Aug 12;64(15):11229-11246. doi: 10.1021/acs.jmedchem.1c00608. Epub 2021 Jul 22.
8
Design, Synthesis, and Structural Characterization of Lysine Covalent BH3 Peptides Targeting Mcl-1.
J Med Chem. 2021 Apr 22;64(8):4903-4912. doi: 10.1021/acs.jmedchem.1c00005. Epub 2021 Apr 2.
9
Therapeutic Targeting of MMP-12 for the Treatment of Chronic Obstructive Pulmonary Disease.
J Med Chem. 2020 Nov 12;63(21):12911-12920. doi: 10.1021/acs.jmedchem.0c01285. Epub 2020 Oct 27.
10
Intracellular Binding/Unbinding Kinetics of Approved Drugs to Carbonic Anhydrase II Observed by in-Cell NMR.
ACS Chem Biol. 2020 Oct 16;15(10):2792-2800. doi: 10.1021/acschembio.0c00590. Epub 2020 Sep 30.

本文引用的文献

1
Enthalpy-Based Screening of Focused Combinatorial Libraries for the Identification of Potent and Selective Ligands.
ACS Chem Biol. 2017 Dec 15;12(12):2981-2989. doi: 10.1021/acschembio.7b00717. Epub 2017 Nov 2.
2
Potent and Selective EphA4 Agonists for the Treatment of ALS.
Cell Chem Biol. 2017 Mar 16;24(3):293-305. doi: 10.1016/j.chembiol.2017.01.006. Epub 2017 Feb 9.
3
High-Throughput Screening (HTS) by NMR Guided Identification of Novel Agents Targeting the Protein Docking Domain of YopH.
ChemMedChem. 2016 Apr 19;11(8):919-27. doi: 10.1002/cmdc.201500441. Epub 2015 Nov 23.
4
Potential clinical implications of recent matrix metalloproteinase inhibitor design strategies.
Expert Rev Proteomics. 2015;12(5):445-7. doi: 10.1586/14789450.2015.1069190. Epub 2015 Jul 15.
5
High-Throughput Screening by Nuclear Magnetic Resonance (HTS by NMR) for the Identification of PPIs Antagonists.
Curr Top Med Chem. 2015;15(20):2032-42. doi: 10.2174/1568026615666150519102459.
6
NMR-based approaches for the identification and optimization of inhibitors of protein-protein interactions.
Chem Rev. 2014 May 14;114(9):4749-63. doi: 10.1021/cr500043b. Epub 2014 Apr 8.
7
'Unconventional' coordination chemistry by metal chelating fragments in a metalloprotein active site.
J Am Chem Soc. 2014 Apr 9;136(14):5400-6. doi: 10.1021/ja500616m. Epub 2014 Mar 27.
8
Fragment-based drug discovery using NMR spectroscopy.
J Biomol NMR. 2013 Jun;56(2):65-75. doi: 10.1007/s10858-013-9740-z. Epub 2013 May 18.
9
Antagonism of a zinc metalloprotease using a unique metal-chelating scaffold: tropolones as inhibitors of P. aeruginosa elastase.
Chem Commun (Camb). 2013 Apr 21;49(31):3197-9. doi: 10.1039/c3cc41191e. Epub 2013 Mar 12.
10
HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery.
Chem Biol. 2013 Jan 24;20(1):19-33. doi: 10.1016/j.chembiol.2012.10.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验