Suppr超能文献

钙敏感受体突变导致低钙血症,破坏跨膜盐桥以激活β-arrestin 偏向性信号转导。

A calcium-sensing receptor mutation causing hypocalcemia disrupts a transmembrane salt bridge to activate β-arrestin-biased signaling.

机构信息

Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7LJ, UK.

Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.

出版信息

Sci Signal. 2018 Feb 20;11(518):eaan3714. doi: 10.1126/scisignal.aan3714.

Abstract

The calcium-sensing receptor (CaSR) is a G protein-coupled receptor (GPCR) that signals through G and G to stimulate cytosolic calcium (Ca) and mitogen-activated protein kinase (MAPK) signaling to control extracellular calcium homeostasis. Studies of loss- and gain-of-function mutations, which cause familial hypocalciuric hypercalcemia type 1 (FHH1) and autosomal dominant hypocalcemia type 1 (ADH1), respectively, have revealed that the CaSR signals in a biased manner. Thus, some mutations associated with FHH1 lead to signaling predominantly through the MAPK pathway, whereas mutations associated with ADH1 preferentially enhance Ca responses. We report a previously unidentified ADH1-associated R680G CaSR mutation, which led to the identification of a CaSR structural motif that mediates biased signaling. Expressing CaSR in HEK 293 cells showed that this mutation increased MAPK signaling without altering Ca responses. Moreover, this gain of function in MAPK activity occurred independently of G and G and was mediated instead by a noncanonical pathway involving β-arrestin proteins. Homology modeling and mutagenesis studies showed that the R680G CaSR mutation selectively enhanced β-arrestin signaling by disrupting a salt bridge formed between Arg and Glu, which are located in CaSR transmembrane domain 3 and extracellular loop 2, respectively. Thus, our results demonstrate CaSR signaling through β-arrestin and the importance of the Arg-Glu salt bridge in mediating signaling bias.

摘要

钙敏感受体 (CaSR) 是一种 G 蛋白偶联受体 (GPCR),通过 G 和 G 信号转导刺激细胞浆钙 (Ca) 和丝裂原活化蛋白激酶 (MAPK) 信号转导,以控制细胞外钙稳态。研究失活和激活功能突变,分别导致家族性低钙血症性高钙血症 1 型 (FHH1) 和常染色体显性低钙血症 1 型 (ADH1),揭示了 CaSR 以偏倚的方式信号转导。因此,一些与 FHH1 相关的突变导致信号主要通过 MAPK 途径,而与 ADH1 相关的突变则优先增强 Ca 反应。我们报告了一个以前未被识别的 ADH1 相关的 R680G CaSR 突变,该突变导致了一个介导偏倚信号转导的 CaSR 结构基序的鉴定。在 HEK 293 细胞中表达 CaSR 表明,该突变增加了 MAPK 信号转导,而不改变 Ca 反应。此外,这种 MAPK 活性的功能获得与 G 和 G 无关,而是通过涉及β-抑制蛋白的非典型途径介导的。同源建模和突变研究表明,R680G CaSR 突变通过破坏位于 CaSR 跨膜域 3 和细胞外环 2 中的 Arg 和 Glu 之间形成的盐桥,选择性地增强了β-抑制蛋白信号转导。因此,我们的结果表明 CaSR 通过β-抑制蛋白进行信号转导,以及 Arg-Glu 盐桥在介导信号转导偏倚中的重要性。

相似文献

6
Insights into calcium-sensing receptor trafficking and biased signalling by studies of calcium homeostasis.
J Mol Endocrinol. 2018 Jul;61(1):R1-R12. doi: 10.1530/JME-18-0049. Epub 2018 Mar 29.
7
The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases.
Nat Rev Endocrinol. 2018 Dec;15(1):33-51. doi: 10.1038/s41574-018-0115-0.
8
Characterization of quinazolinone calcilytic therapy for autosomal dominant hypocalcemia type 1 (ADH1).
J Biol Chem. 2025 Apr;301(4):108404. doi: 10.1016/j.jbc.2025.108404. Epub 2025 Mar 12.
9
Identification of p.Arg205Cys in CASR in an autosomal dominant hypocalcaemia type 1 pedigree: A case report.
Medicine (Baltimore). 2021 Jun 25;100(25):e26443. doi: 10.1097/MD.0000000000026443.

引用本文的文献

1
Characterization of quinazolinone calcilytic therapy for autosomal dominant hypocalcemia type 1 (ADH1).
J Biol Chem. 2025 Apr;301(4):108404. doi: 10.1016/j.jbc.2025.108404. Epub 2025 Mar 12.
3
ADAM19 cleaves the PTH receptor and associates with brachydactyly type E.
Life Sci Alliance. 2024 Feb 8;7(4). doi: 10.26508/lsa.202302400. Print 2024 Apr.
4
Calcium-sensing receptor-mediated NLRP3 inflammasome activation in rheumatoid arthritis and autoinflammation.
Front Physiol. 2023 Jan 6;13:1078569. doi: 10.3389/fphys.2022.1078569. eCollection 2022.
5
Structural Elements Directing G Proteins and β-Arrestin Interactions with the Human Melatonin Type 2 Receptor Revealed by Natural Variants.
ACS Pharmacol Transl Sci. 2022 Jan 25;5(2):89-101. doi: 10.1021/acsptsci.1c00239. eCollection 2022 Feb 11.
6
Naturally Occurring Genetic Variants in the Oxytocin Receptor Alter Receptor Signaling Profiles.
ACS Pharmacol Transl Sci. 2021 Sep 8;4(5):1543-1555. doi: 10.1021/acsptsci.1c00095. eCollection 2021 Oct 8.
7
Calcium-Sensing Receptors Control CYP27B1-Luciferase Expression: Transcriptional and Posttranscriptional Mechanisms.
J Endocr Soc. 2021 Jun 5;5(9):bvab057. doi: 10.1210/jendso/bvab057. eCollection 2021 Sep 1.
8
Calcium-sensing receptor signaling - How human disease informs biology.
Curr Opin Endocr Metab Res. 2021 Feb;16:10-28. doi: 10.1016/j.coemr.2020.06.007. Epub 2020 Jul 2.
9
Heterogeneity of G protein activation by the calcium-sensing receptor.
J Mol Endocrinol. 2021 Jun 21;67(2):41-53. doi: 10.1530/JME-21-0058.
10
The role of calcium-sensing receptor signaling in regulating transepithelial calcium transport.
Exp Biol Med (Maywood). 2021 Nov;246(22):2407-2419. doi: 10.1177/15353702211010415. Epub 2021 Apr 29.

本文引用的文献

1
G mutation in mice causes hypocalcemia rectifiable by calcilytic therapy.
JCI Insight. 2017 Feb 9;2(3):e91103. doi: 10.1172/jci.insight.91103.
2
An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain.
Cell Discov. 2016 Nov 22;2:16042. doi: 10.1038/celldisc.2016.42. eCollection 2016.
3
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
4
Towards a structural understanding of allosteric drugs at the human calcium-sensing receptor.
Cell Res. 2016 May;26(5):574-92. doi: 10.1038/cr.2016.36. Epub 2016 Mar 22.
6
β-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation.
Nat Cell Biol. 2016 Mar;18(3):303-10. doi: 10.1038/ncb3307. Epub 2016 Feb 1.
7
A G-protein Subunit-α11 Loss-of-Function Mutation, Thr54Met, Causes Familial Hypocalciuric Hypercalcemia Type 2 (FHH2).
J Bone Miner Res. 2016 Jun;31(6):1200-6. doi: 10.1002/jbmr.2778. Epub 2016 Feb 6.
8
G-protein inhibition profile of the reported Gq/11 inhibitor UBO-QIC.
Biochem Biophys Res Commun. 2016 Jan 1;469(1):101-107. doi: 10.1016/j.bbrc.2015.11.078. Epub 2015 Nov 22.
9
A global reference for human genetic variation.
Nature. 2015 Oct 1;526(7571):68-74. doi: 10.1038/nature15393.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验