Suppr超能文献

SUN1 寡聚化在核膜中的分子机制研究。

Molecular Insights into the Mechanisms of SUN1 Oligomerization in the Nuclear Envelope.

机构信息

Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California.

Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota.

出版信息

Biophys J. 2018 Mar 13;114(5):1190-1203. doi: 10.1016/j.bpj.2018.01.015.

Abstract

The LINC complex is found in a wide variety of organisms and is formed by the transluminal interaction between outer- and inner-nuclear-membrane KASH and SUN proteins, respectively. Most extensively studied are SUN1 and SUN2 proteins, which are widely expressed in mammals. Although SUN1 and SUN2 play functionally redundant roles in several cellular processes, more recent studies have revealed diverse and distinct functions for SUN1. While several recent in vitro structural studies have revealed the molecular details of various fragments of SUN2, no such structural information is available for SUN1. Herein, we conduct a systematic analysis of the molecular relationships between SUN1 and SUN2, highlighting key similarities and differences that could lead to clues into their distinct functions. We use a wide range of computational tools, including multiple sequence alignments, homology modeling, molecular docking, and molecular dynamic simulations, to predict structural differences between SUN1 and SUN2, with the goal of understanding the molecular mechanisms underlying SUN1 oligomerization in the nuclear envelope. Our simulations suggest that the structural model of SUN1 is stable in a trimeric state and that SUN1 trimers can associate through their SUN domains to form lateral complexes. We also ask whether SUN1 could adopt an inactive monomeric conformation as seen in SUN2. Our results imply that the KASH binding domain of SUN1 is also inhibited in monomeric SUN1 but through weaker interactions than in monomeric SUN2.

摘要

LINC 复合物存在于多种生物体中,由核膜内外 KASH 和 SUN 蛋白的穿核相互作用形成。SUN1 和 SUN2 蛋白被广泛研究,它们在哺乳动物中广泛表达。尽管 SUN1 和 SUN2 在几个细胞过程中发挥功能冗余的作用,但最近的研究揭示了 SUN1 的多种不同和独特的功能。虽然最近的几项体外结构研究揭示了 SUN2 各种片段的分子细节,但 SUN1 没有这样的结构信息。在此,我们对 SUN1 和 SUN2 之间的分子关系进行了系统分析,强调了关键的相似性和差异性,这些可能为其独特功能提供线索。我们使用了广泛的计算工具,包括多重序列比对、同源建模、分子对接和分子动力学模拟,来预测 SUN1 和 SUN2 之间的结构差异,目的是了解 SUN1 在核膜中寡聚化的分子机制。我们的模拟表明,SUN1 的结构模型在三聚体状态下是稳定的,并且 SUN1 三聚体可以通过其 SUN 结构域相互连接形成侧向复合物。我们还询问 SUN1 是否可以采用类似于 SUN2 的无活性单体构象。我们的结果表明,SUN1 的 KASH 结合结构域在单体 SUN1 中也受到抑制,但与单体 SUN2 相比,抑制作用较弱。

相似文献

1
Molecular Insights into the Mechanisms of SUN1 Oligomerization in the Nuclear Envelope.
Biophys J. 2018 Mar 13;114(5):1190-1203. doi: 10.1016/j.bpj.2018.01.015.
2
Structural conservation of the autoinhibitory domain in SUN proteins.
Biochem Biophys Res Commun. 2018 Feb 19;496(4):1337-1343. doi: 10.1016/j.bbrc.2018.02.015. Epub 2018 Feb 3.
3
Differential incorporation of SUN-domain proteins into LINC complexes is coupled to gene expression.
PLoS One. 2018 May 29;13(5):e0197621. doi: 10.1371/journal.pone.0197621. eCollection 2018.
4
Functional association of Sun1 with nuclear pore complexes.
J Cell Biol. 2007 Aug 27;178(5):785-98. doi: 10.1083/jcb.200704108.
5
6
A molecular model for LINC complex regulation: activation of SUN2 for KASH binding.
Mol Biol Cell. 2018 Aug 8;29(16):2012-2023. doi: 10.1091/mbc.E18-04-0266. Epub 2018 Jul 11.
7
Fluorescence fluctuation spectroscopy reveals differential SUN protein oligomerization in living cells.
Mol Biol Cell. 2018 May 1;29(9):1003-1011. doi: 10.1091/mbc.E17-04-0233. Epub 2018 Mar 22.
9
Structural insights into SUN-KASH complexes across the nuclear envelope.
Cell Res. 2012 Oct;22(10):1440-52. doi: 10.1038/cr.2012.126. Epub 2012 Sep 4.
10
Sun1 deficiency leads to cerebellar ataxia in mice.
Dis Model Mech. 2015 Aug 1;8(8):957-67. doi: 10.1242/dmm.019240. Epub 2015 May 5.

引用本文的文献

1
Active microtubule-actin cross-talk mediated by a nesprin-2G-kinesin complex.
Sci Adv. 2025 Feb 21;11(8):eadq4726. doi: 10.1126/sciadv.adq4726.
2
Nuclear Envelope Dynamics in Amoebae.
Cells. 2025 Jan 26;14(3):186. doi: 10.3390/cells14030186.
5
Life at the crossroads: the nuclear LINC complex and vascular mechanotransduction.
Front Physiol. 2024 May 20;15:1411995. doi: 10.3389/fphys.2024.1411995. eCollection 2024.
6
Life outside the LINC complex - Do SUN proteins have LINC-independent functions?
Bioessays. 2024 Aug;46(8):e2400034. doi: 10.1002/bies.202400034. Epub 2024 May 27.
7
Force transmission and SUN-KASH higher-order assembly in the LINC complex models.
Biophys J. 2023 Dec 5;122(23):4582-4597. doi: 10.1016/j.bpj.2023.11.001. Epub 2023 Nov 2.
8
Building and breaking mechanical bridges between the nucleus and cytoskeleton: Regulation of LINC complex assembly and disassembly.
Curr Opin Cell Biol. 2023 Dec;85:102260. doi: 10.1016/j.ceb.2023.102260. Epub 2023 Oct 17.
9
Molecular insights into LINC complex architecture through the crystal structure of a luminal trimeric coiled-coil domain of SUN1.
Front Cell Dev Biol. 2023 Jun 21;11:1144277. doi: 10.3389/fcell.2023.1144277. eCollection 2023.
10
Nuclear mechanosignaling in striated muscle diseases.
Front Physiol. 2023 Mar 7;14:1126111. doi: 10.3389/fphys.2023.1126111. eCollection 2023.

本文引用的文献

1
Quantitative Brightness Analysis of Protein Oligomerization in the Nuclear Envelope.
Biophys J. 2017 Jul 11;113(1):138-147. doi: 10.1016/j.bpj.2017.05.044.
2
Electrostatic Interactions as Mediators in the Allosteric Activation of Protein Kinase A RIα.
Biochemistry. 2017 Mar 14;56(10):1536-1545. doi: 10.1021/acs.biochem.6b01152. Epub 2017 Mar 6.
3
Opposing roles for distinct LINC complexes in regulation of the small GTPase RhoA.
Mol Biol Cell. 2017 Jan 1;28(1):182-191. doi: 10.1091/mbc.E16-06-0467. Epub 2016 Nov 9.
4
UniProt: the universal protein knowledgebase.
Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169. doi: 10.1093/nar/gkw1099. Epub 2016 Nov 29.
7
Nuclear Envelope Retention of LINC Complexes Is Promoted by SUN-1 Oligomerization in the Caenorhabditis elegans Germ Line.
Genetics. 2016 Jun;203(2):733-48. doi: 10.1534/genetics.116.188094. Epub 2016 Apr 20.
8
Coiled-Coil Domains of SUN Proteins as Intrinsic Dynamic Regulators.
Structure. 2016 Jan 5;24(1):80-91. doi: 10.1016/j.str.2015.10.024. Epub 2015 Dec 10.
9
Inner nuclear envelope protein SUN1 plays a prominent role in mammalian mRNA export.
Nucleic Acids Res. 2015 Nov 16;43(20):9874-88. doi: 10.1093/nar/gkv1058. Epub 2015 Oct 17.
10
A Disulfide Bond Is Required for the Transmission of Forces through SUN-KASH Complexes.
Biophys J. 2015 Aug 4;109(3):501-9. doi: 10.1016/j.bpj.2015.06.057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验