Suppr超能文献

利用 RNA 靶向的 VI-D CRISPR 效应蛋白进行转录组工程

Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.

机构信息

Laboratory of Molecular and Cell Biology, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; Helmsley Center for Genomic Medicine, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.

Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Cell. 2018 Apr 19;173(3):665-676.e14. doi: 10.1016/j.cell.2018.02.033. Epub 2018 Mar 15.

Abstract

Class 2 CRISPR-Cas systems endow microbes with diverse mechanisms for adaptive immunity. Here, we analyzed prokaryotic genome and metagenome sequences to identify an uncharacterized family of RNA-guided, RNA-targeting CRISPR systems that we classify as type VI-D. Biochemical characterization and protein engineering of seven distinct orthologs generated a ribonuclease effector derived from Ruminococcus flavefaciens XPD3002 (CasRx) with robust activity in human cells. CasRx-mediated knockdown exhibits high efficiency and specificity relative to RNA interference across diverse endogenous transcripts. As one of the most compact single-effector Cas enzymes, CasRx can also be flexibly packaged into adeno-associated virus. We target virally encoded, catalytically inactive CasRx to cis elements of pre-mRNA to manipulate alternative splicing, alleviating dysregulated tau isoform ratios in a neuronal model of frontotemporal dementia. Our results present CasRx as a programmable RNA-binding module for efficient targeting of cellular RNA, enabling a general platform for transcriptome engineering and future therapeutic development.

摘要

2 类 CRISPR-Cas 系统为微生物赋予了多种适应性免疫机制。在这里,我们分析了原核基因组和宏基因组序列,以鉴定一种未被描述的 RNA 指导的、靶向 RNA 的 CRISPR 系统,我们将其归类为 VI-D 型。对来自产黄瘤胃球菌 XPD3002 的七种不同同源物的生化特性和蛋白质工程分析产生了一种来自产黄瘤胃球菌 XPD3002 的核糖核酸酶效应物(CasRx),它在人类细胞中具有强大的活性。与跨多种内源性转录物的 RNA 干扰相比,CasRx 介导的敲低具有高效性和特异性。作为最紧凑的单一效应物 Cas 酶之一,CasRx 还可以灵活地包装到腺相关病毒中。我们将病毒编码的、无催化活性的 CasRx 靶向到 pre-mRNA 的顺式元件,以操纵可变剪接,从而缓解额颞痴呆神经元模型中失调的 tau 同工型比例。我们的结果表明 CasRx 是一种可编程的 RNA 结合模块,可用于高效靶向细胞 RNA,为转录组工程和未来的治疗开发提供了一个通用平台。

相似文献

1
Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.
Cell. 2018 Apr 19;173(3):665-676.e14. doi: 10.1016/j.cell.2018.02.033. Epub 2018 Mar 15.
2
Functional Features and Current Applications of the RNA-Targeting Type VI CRISPR-Cas Systems.
Adv Sci (Weinh). 2021 May 5;8(13):2004685. doi: 10.1002/advs.202004685. eCollection 2021 Jul.
3
Efficient RNA Virus Targeting via CRISPR/CasRx in Fish.
J Virol. 2021 Sep 9;95(19):e0046121. doi: 10.1128/JVI.00461-21.
4
Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems.
J Mol Biol. 2019 Jan 4;431(1):66-87. doi: 10.1016/j.jmb.2018.06.029. Epub 2018 Jun 22.
5
Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.
Mol Cell. 2018 Apr 19;70(2):327-339.e5. doi: 10.1016/j.molcel.2018.02.028. Epub 2018 Mar 15.
7
Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28.
Mol Cell. 2017 Feb 16;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub 2017 Jan 5.
8
Structure and engineering of the minimal type VI CRISPR-Cas13bt3.
Mol Cell. 2022 Sep 1;82(17):3178-3192.e5. doi: 10.1016/j.molcel.2022.08.001. Epub 2022 Aug 25.
9
Programmable RNA Targeting Using CasRx in Flies.
CRISPR J. 2020 Jun;3(3):164-176. doi: 10.1089/crispr.2020.0018.
10
CRISPR-Cas13d mediates robust RNA virus interference in plants.
Genome Biol. 2019 Dec 2;20(1):263. doi: 10.1186/s13059-019-1881-2.

引用本文的文献

3
CRISPR/Cas13-Based Anti-RNA Viral Approaches.
Genes (Basel). 2025 Jul 25;16(8):875. doi: 10.3390/genes16080875.
6
In situ proximity labeling of proteins associated with circRNA and RNA G-quadruplexes.
Nat Chem Biol. 2025 Aug 7. doi: 10.1038/s41589-025-01993-2.
7
Revolutionizing CRISPR technology with artificial intelligence.
Exp Mol Med. 2025 Jul;57(7):1419-1431. doi: 10.1038/s12276-025-01462-9. Epub 2025 Jul 31.
9
Methods and applications of in vivo CRISPR screening.
Nat Rev Genet. 2025 Jul 29. doi: 10.1038/s41576-025-00873-8.
10
Cas13d-mediated isoform-specific RNA knockdown with a unified computational and experimental toolbox.
Nat Commun. 2025 Jul 29;16(1):6948. doi: 10.1038/s41467-025-62066-5.

本文引用的文献

1
A Survey of Genome Editing Activity for 16 Cas12a Orthologs.
Keio J Med. 2020 Sep 25;69(3):59-65. doi: 10.2302/kjm.2019-0009-OA. Epub 2019 Nov 14.
2
Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map.
PLoS Biol. 2017 Nov 30;15(11):e2003213. doi: 10.1371/journal.pbio.2003213. eCollection 2017 Nov.
3
RNA editing with CRISPR-Cas13.
Science. 2017 Nov 24;358(6366):1019-1027. doi: 10.1126/science.aaq0180. Epub 2017 Oct 25.
4
DNA sequencing at 40: past, present and future.
Nature. 2017 Oct 19;550(7676):345-353. doi: 10.1038/nature24286. Epub 2017 Oct 11.
5
RNA targeting with CRISPR-Cas13.
Nature. 2017 Oct 12;550(7675):280-284. doi: 10.1038/nature24049. Epub 2017 Oct 4.
6
Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9.
Cell. 2017 Aug 24;170(5):899-912.e10. doi: 10.1016/j.cell.2017.07.010. Epub 2017 Aug 10.
7
RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes.
Mol Cell. 2017 May 4;66(3):373-383.e3. doi: 10.1016/j.molcel.2017.04.008.
8
In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni.
Nat Commun. 2017 Feb 21;8:14500. doi: 10.1038/ncomms14500.
9
Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities.
Cell. 2017 Jan 12;168(1-2):121-134.e12. doi: 10.1016/j.cell.2016.12.031.
10
Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28.
Mol Cell. 2017 Feb 16;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub 2017 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验