Suppr超能文献

有害变异、基因组自同型性与疾病风险之间的关系:来自 1000 基因组计划的见解。

Relationship between Deleterious Variation, Genomic Autozygosity, and Disease Risk: Insights from The 1000 Genomes Project.

机构信息

Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA.

出版信息

Am J Hum Genet. 2018 Apr 5;102(4):658-675. doi: 10.1016/j.ajhg.2018.02.013. Epub 2018 Mar 15.

Abstract

Genomic regions of autozygosity (ROAs) represent segments of individual genomes that are homozygous for haplotypes inherited identical-by-descent (IBD) from a common ancestor. ROAs are nonuniformly distributed across the genome, and increased ROA levels are a reported risk factor for numerous complex diseases. Previously, we hypothesized that long ROAs are enriched for deleterious homozygotes as a result of young haplotypes with recent deleterious mutations-relatively untouched by purifying selection-being paired IBD as a consequence of recent parental relatedness, a pattern supported by ROA and whole-exome sequence data on 27 individuals. Here, we significantly bolster support for our hypothesis and expand upon our original analyses using ROA and whole-genome sequence data on 2,436 individuals from The 1000 Genomes Project. Considering CADD deleteriousness scores, we reaffirm our previous observation that long ROAs are enriched for damaging homozygotes worldwide. We show that strongly damaging homozygotes experience greater enrichment than weaker damaging homozygotes, while overall enrichment varies appreciably among populations. Mendelian disease genes and those encoding FDA-approved drug targets have significantly increased rates of gain in damaging homozygotes with increasing ROA coverage relative to all other genes. In genes implicated in eight complex phenotypes for which ROA levels have been identified as a risk factor, rates of gain in damaging homozygotes vary across phenotypes and populations but frequently differ significantly from non-disease genes. These findings highlight the potential confounding effects of population background in the assessment of associations between ROA levels and complex disease risk, which might underlie reported inconsistencies in ROA-phenotype associations.

摘要

个体基因组的同源区域(ROA)代表个体基因组的某些片段,这些片段的单倍型来自共同祖先的完全一致遗传(IBD)。ROA 在基因组中分布不均匀,并且增加的 ROA 水平是许多复杂疾病的报告风险因素。以前,我们假设长 ROA 由于最近具有有害突变的年轻单倍型而富集有害纯合子,这些突变相对不受最近的选择压力影响,由于最近的父母亲缘关系而配对 IBD,这种模式得到了 27 个人的 ROA 和全外显子组序列数据的支持。在这里,我们使用来自 1000 基因组计划的 2436 个人的 ROA 和全基因组序列数据,极大地支持了我们的假设,并扩展了我们的原始分析。考虑到 CADD 有害性评分,我们重申了我们之前的观察结果,即在全球范围内,长 ROA 富集有害纯合子。我们表明,强有害纯合子比弱有害纯合子经历更大的富集,而整体富集在不同人群中差异很大。孟德尔疾病基因和编码 FDA 批准的药物靶点的基因,在 ROA 覆盖率增加时,有害纯合子的增益率显著高于所有其他基因。在 8 个复杂表型中,ROA 水平被确定为风险因素的基因中,有害纯合子的增益率在表型和人群中存在差异,但通常与非疾病基因有显著差异。这些发现强调了在评估 ROA 水平与复杂疾病风险之间的关联时,人群背景的潜在混杂效应,这可能是报告的 ROA-表型关联不一致的原因。

相似文献

1
Relationship between Deleterious Variation, Genomic Autozygosity, and Disease Risk: Insights from The 1000 Genomes Project.
Am J Hum Genet. 2018 Apr 5;102(4):658-675. doi: 10.1016/j.ajhg.2018.02.013. Epub 2018 Mar 15.
2
Weighted likelihood inference of genomic autozygosity patterns in dense genotype data.
BMC Genomics. 2017 Dec 1;18(1):928. doi: 10.1186/s12864-017-4312-3.
3
Long runs of homozygosity are enriched for deleterious variation.
Am J Hum Genet. 2013 Jul 11;93(1):90-102. doi: 10.1016/j.ajhg.2013.05.003. Epub 2013 Jun 6.
4
Ancestry-Dependent Enrichment of Deleterious Homozygotes in Runs of Homozygosity.
Am J Hum Genet. 2019 Oct 3;105(4):747-762. doi: 10.1016/j.ajhg.2019.08.011. Epub 2019 Sep 19.
6
Genome-wide autozygosity mapping in human populations.
Genet Epidemiol. 2009 Feb;33(2):172-80. doi: 10.1002/gepi.20344.
7
The Maintenance of Deleterious Variation in Wild Chinese Rhesus Macaques.
Genome Biol Evol. 2024 Jun 4;16(6). doi: 10.1093/gbe/evae115.
8
Associations of genome-wide and regional autozygosity with 96 complex traits in old order Amish.
BMC Genomics. 2023 Mar 20;24(1):134. doi: 10.1186/s12864-023-09208-5.
9
Measures of autozygosity in decline: globalization, urbanization, and its implications for medical genetics.
PLoS Genet. 2009 Mar;5(3):e1000415. doi: 10.1371/journal.pgen.1000415. Epub 2009 Mar 13.
10
Runs of homozygosity: windows into population history and trait architecture.
Nat Rev Genet. 2018 Apr;19(4):220-234. doi: 10.1038/nrg.2017.109. Epub 2018 Jan 15.

引用本文的文献

2
The impact of the Turkish population variome on the genomic architecture of rare disease traits.
Genet Med Open. 2024 Feb 14;2:101830. doi: 10.1016/j.gimo.2024.101830. eCollection 2024.
4
The Maintenance of Deleterious Variation in Wild Chinese Rhesus Macaques.
Genome Biol Evol. 2024 Jun 4;16(6). doi: 10.1093/gbe/evae115.
5
Genotypic and phenotypic consequences of domestication in dogs.
bioRxiv. 2024 Nov 30:2024.05.01.592072. doi: 10.1101/2024.05.01.592072.
6
The Maintenance of Deleterious Variation in Wild Chinese Rhesus Macaques.
bioRxiv. 2024 Apr 23:2023.10.04.560901. doi: 10.1101/2023.10.04.560901.
8
C19ORF84 connects piRNA and DNA methylation machineries to defend the mammalian germ line.
Mol Cell. 2024 Mar 21;84(6):1021-1035.e11. doi: 10.1016/j.molcel.2024.01.014. Epub 2024 Feb 14.
10
Diverse monogenic subforms of human spermatogenic failure.
Nat Commun. 2022 Dec 26;13(1):7953. doi: 10.1038/s41467-022-35661-z.

本文引用的文献

1
Weighted likelihood inference of genomic autozygosity patterns in dense genotype data.
BMC Genomics. 2017 Dec 1;18(1):928. doi: 10.1186/s12864-017-4312-3.
2
Consanguinity Rates Predict Long Runs of Homozygosity in Jewish Populations.
Hum Hered. 2016;82(3-4):87-102. doi: 10.1159/000478897. Epub 2017 Sep 15.
4
Critical points for an accurate human genome analysis.
Hum Mutat. 2017 Aug;38(8):912-921. doi: 10.1002/humu.23238. Epub 2017 Jun 16.
5
GARLIC: Genomic Autozygosity Regions Likelihood-based Inference and Classification.
Bioinformatics. 2017 Jul 1;33(13):2059-2062. doi: 10.1093/bioinformatics/btx102.
7
The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog).
Nucleic Acids Res. 2017 Jan 4;45(D1):D896-D901. doi: 10.1093/nar/gkw1133. Epub 2016 Nov 29.
8
No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study.
PLoS Genet. 2016 Oct 28;12(10):e1006343. doi: 10.1371/journal.pgen.1006343. eCollection 2016 Oct.
9
Heterozygosity Ratio, a Robust Global Genomic Measure of Autozygosity and Its Association with Height and Disease Risk.
Genetics. 2016 Nov;204(3):893-904. doi: 10.1534/genetics.116.189936. Epub 2016 Aug 31.
10
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验