Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan.
Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
Phys Med. 2018 Mar;47:73-79. doi: 10.1016/j.ejmp.2018.02.013. Epub 2018 Mar 2.
The Bayesian penalized-likelihood reconstruction algorithm (BPL), Q.Clear, uses relative difference penalty as a regularization function to control image noise and the degree of edge-preservation in PET images. The present study aimed to determine the effects of suppression on edge artifacts due to point-spread-function (PSF) correction using a Q.Clear.
Spheres of a cylindrical phantom contained a background of 5.3 kBq/mL of [F]FDG and sphere-to-background ratios (SBR) of 16, 8, 4 and 2. The background also contained water and spheres containing 21.2 kBq/mL of [F]FDG as non-background. All data were acquired using a Discovery PET/CT 710 and were reconstructed using three-dimensional ordered-subset expectation maximization with time-of-flight (TOF) and PSF correction (3D-OSEM), and Q.Clear with TOF (BPL). We investigated β-values of 200-800 using BPL. The PET images were analyzed using visual assessment and profile curves, edge variability and contrast recovery coefficients were measured.
The 38- and 27-mm spheres were surrounded by higher radioactivity concentration when reconstructed with 3D-OSEM as opposed to BPL, which suppressed edge artifacts. Images of 10-mm spheres had sharper overshoot at high SBR and non-background when reconstructed with BPL. Although contrast recovery coefficients of 10-mm spheres in BPL decreased as a function of increasing β, higher penalty parameter decreased the overshoot.
BPL is a feasible method for the suppression of edge artifacts of PSF correction, although this depends on SBR and sphere size. Overshoot associated with BPL caused overestimation in small spheres at high SBR. Higher penalty parameter in BPL can suppress overshoot more effectively.
贝叶斯惩罚似然重建算法(BPL),即 Q.Clear,使用相对差异惩罚作为正则化函数,以控制 PET 图像中的图像噪声和边缘保持程度。本研究旨在确定使用 Q.Clear 校正点扩散函数(PSF)校正后边缘伪影的抑制效果。
圆柱形体模的球体中包含背景放射性活度为 5.3 kBq/mL 的[F]FDG 和球-背景比(SBR)为 16、8、4 和 2 的球体,背景还包含水和含有 21.2 kBq/mL 的[F]FDG 的球体作为非背景。所有数据均使用 Discovery PET/CT 710 采集,并使用带有时间-of-flight(TOF)和 PSF 校正(3D-OSEM)的三维有序子集期望最大化进行重建,以及带有 TOF 的 Q.Clear(BPL)。我们使用 BPL 研究了β值为 200-800 的情况。使用视觉评估和轮廓曲线对 PET 图像进行分析,测量边缘变化和对比恢复系数。
与 BPL 相比,3D-OSEM 重建时,38 和 27mm 球体周围的放射性活度浓度更高,从而抑制了边缘伪影。使用 BPL 重建时,10mm 球体在高 SBR 和非背景时的过冲更明显。尽管 BPL 中 10mm 球体的对比恢复系数随β的增加而减小,但较高的惩罚参数可减少过冲。
BPL 是抑制 PSF 校正的边缘伪影的一种可行方法,尽管这取决于 SBR 和球体大小。BPL 引起的过冲与高 SBR 时小球体的高估有关。BPL 中的较高惩罚参数可以更有效地抑制过冲。