Suppr超能文献

氨曲南药代动力学/药效学目标。

Avibactam Pharmacokinetic/Pharmacodynamic Targets.

机构信息

AstraZeneca, Waltham, Massachusetts, USA

AstraZeneca, Alderley Park, Macclesfield, United Kingdom.

出版信息

Antimicrob Agents Chemother. 2018 May 25;62(6). doi: 10.1128/AAC.02446-17. Print 2018 Jun.

Abstract

Avibactam is a novel non-β-lactam β-lactamase inhibitor that has been approved in the United States and Europe for use in combination with ceftazidime. Combinations of avibactam with aztreonam or ceftaroline fosamil have also been clinically evaluated. Until recently, there has been very little precedence of which pharmacokinetic/pharmacodynamic (PK/PD) indices and magnitudes are appropriate to use for β-lactamase inhibitors in population PK modeling for analyzing potential doses and susceptibility breakpoints. For avibactam, several preclinical studies using different and models have been conducted to identify the PK/PD index of avibactam and the magnitude of exposure necessary for effect in combination with ceftazidime, aztreonam, or ceftaroline fosamil. The PD driver of avibactam critical for restoring the activity of all three partner β-lactams was found to be time dependent rather than concentration dependent and was defined as the time that the concentration of avibactam exceeded a critical concentration threshold (%T>C). The magnitude of the C and the time that this threshold needed to be exceeded to elicit particular PD endpoints varied depending on the model and the partner β-lactam. This review describes the preclinical studies used to determine the avibactam PK/PD target in combination with its β-lactam partners.

摘要

阿维巴坦是一种新型非β-内酰胺β-内酰胺酶抑制剂,已获美国和欧洲批准与头孢他啶联合使用。阿维巴坦与氨曲南或头孢替坦二氟甲氧基磷酸酯的联合也已进行临床评估。直到最近,对于β-内酰胺酶抑制剂在群体药代动力学建模中用于分析潜在剂量和敏感性折点的合适药代动力学/药效学(PK/PD)指标和幅度,几乎没有什么先例。对于阿维巴坦,已经进行了几项使用不同模型的临床前研究,以确定阿维巴坦的 PK/PD 指标以及与头孢他啶、氨曲南或头孢替坦二氟甲氧基磷酸酯联合使用所需的暴露程度。对于恢复三种β-内酰胺类药物活性至关重要的阿维巴坦的 PD 驱动因素被发现是时间依赖性而不是浓度依赖性,并被定义为阿维巴坦浓度超过临界浓度阈值(%T>C)的时间。C 的幅度以及达到特定 PD 终点所需超过该阈值的时间,取决于模型和β-内酰胺类药物的伙伴。本文综述了用于确定与阿维巴坦及其β-内酰胺类药物伙伴联合使用的阿维巴坦 PK/PD 靶标的临床前研究。

相似文献

1
Avibactam Pharmacokinetic/Pharmacodynamic Targets.
Antimicrob Agents Chemother. 2018 May 25;62(6). doi: 10.1128/AAC.02446-17. Print 2018 Jun.
2
Pharmacokinetics/pharmacodynamics of a β-lactam and β-lactamase inhibitor combination: a novel approach for aztreonam/avibactam.
J Antimicrob Chemother. 2015 Sep;70(9):2618-26. doi: 10.1093/jac/dkv132. Epub 2015 May 29.
5
Experimental design and modelling approach to evaluate efficacy of β-lactam/β-lactamase inhibitor combinations.
Clin Microbiol Infect. 2018 Jul;24(7):707-715. doi: 10.1016/j.cmi.2017.07.020. Epub 2017 Jul 29.

引用本文的文献

1
Clinical efficacy, safety and pharmacokinetics of novel β-lactam/β-lactamase inhibitor combinations: a systematic review.
JAC Antimicrob Resist. 2025 Jun 19;7(3):dlaf096. doi: 10.1093/jacamr/dlaf096. eCollection 2025 Jun.
2
Population pharmacokinetic/pharmacodynamic modeling to optimize aztreonam-avibactam dose regimens for adult patients.
Antimicrob Agents Chemother. 2025 Aug 6;69(8):e0195024. doi: 10.1128/aac.01950-24. Epub 2025 Jun 18.
3
Aztreonam plus ceftazidime-avibactam for post-neurosurgical meningitis due to .
Antimicrob Agents Chemother. 2025 Aug 6;69(8):e0017225. doi: 10.1128/aac.00172-25. Epub 2025 Jun 2.
5
A model-based evaluation of the pharmacokinetics-pharmacodynamics (PKPD) of avibactam in combination with ceftazidime.
JAC Antimicrob Resist. 2025 Mar 11;7(2):dlaf036. doi: 10.1093/jacamr/dlaf036. eCollection 2025 Apr.
10
Pharmacokinetic/pharma-codynamic study of pralurbactam (FL058) combined with meropenem in a neutropenic murine thigh infection model.
Front Microbiol. 2024 Dec 17;15:1516979. doi: 10.3389/fmicb.2024.1516979. eCollection 2024.

本文引用的文献

6
In Vitro Susceptibility of Global Surveillance Isolates of Pseudomonas aeruginosa to Ceftazidime-Avibactam (INFORM 2012 to 2014).
Antimicrob Agents Chemother. 2016 Jul 22;60(8):4743-9. doi: 10.1128/AAC.00220-16. Print 2016 Aug.
10
Optimization of human dose prediction by using quantitative and translational pharmacology in drug discovery.
Future Med Chem. 2015;7(17):2351-69. doi: 10.4155/fmc.15.143. Epub 2015 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验