Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
EPIGET-Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
Lancet Planet Health. 2018 Apr;2(4):e174-e183. doi: 10.1016/S2542-5196(18)30049-4. Epub 2018 Apr 4.
Exposure to particulate air pollution has been linked with risk of carcinogenesis. Damage to repair pathways might have long-term adverse health effects. We aimed to investigate the association of prenatal exposure to air pollution with placental mutation rate and the DNA methylation of key placental DNA repair genes.
This cohort study used data from the ongoing ENVironmental Influence ON early AGEing (ENVIRONAGE) birth cohort, which enrols pairs of mothers and neonates (singleton births only) at the East-Limburg Hospital (Genk, Belgium). Placental DNA samples were collected after birth. We used bisulfite-PCR-pyrosequencing to investigate the mutation rate of Alu (a marker for overall DNA mutation) and DNA methylation in the promoter genes of key DNA repair and tumour suppressor genes (APEX1, OGG1, PARP1, ERCC1, ERCC4, p53, and DAPK1). We used a high-resolution air pollution model to estimate exposure to particulate matter with a diameter less than 2·5 μm (PM), black carbon, and NO over the entire pregnancy on the basis of maternal address. Alu mutation was analysed with a linear regression model, and methylation values of the selected genes were analysed in mixed-effects models. Effect estimates are presented as the relative percentage change in methylation for an ambient air pollution increment of one IQR (ie, the difference between the first and third quartiles of exposure in the entire cohort).
500 biobanked placental DNA samples were randomly selected from 814 pairs of mothers and neonates who were recruited to the cohort between Feb 1, 2010, and Dec 31, 2014, of which 463 samples met the pyrosequencing quality control criteria. IQR exposure increments were 3·84 μg/m for PM, 0·36 μg/m for black carbon, and 5·34 μg/m for NO. Among these samples, increased Alu mutation rate was associated with greater exposure to PM (r=0·26, p<0·0001) and black carbon (r=0·33, p<0·0001), but not NO. Promoter methylation was positively associated with PM in APEX1 (7·34%, 95% CI 0·52 to 14·16, p=0·009), OGG1 (13·06, 3·88 to 22·24, p=0·005), ERCC4 (16·31%, 5·43 to 27·18, p=0·01), and p53 (10·60%, 4·46 to 16·74, p=0·01), whereas promoter methylation of DAPK1 (-12·92%, -22·35 to -3·49, p=0·007) was inversely associated with PM exposure. Black carbon exposure was associated with elevated promoter methylation in APEX1 (9·16%, 4·06 to 14·25, p=0·01) and ERCC4 (27·56%, 17·58 to 37·55, p<0·0001). Promoter methylation was not associated with pollutant exposure in PARP1 and ERCC1, and NO exposure was not associated with methylation in any of the genes studied.
Transplacental in-utero exposure to particulate matter is associated with an increased overall placental mutation rate (as measured with Alu), which occurred in concert with epigenetic alterations in key DNA repair and tumour suppressor genes. Our results suggest that exposure to air pollution can induce changes to fetal and neonatal DNA repair capacity. Future studies will be essential to elucidate whether these changes persist and have a role in carcinogenic insults later in life.
European Research Council and the Flemish Scientific Fund.
接触颗粒物空气污染与致癌风险有关。 损伤修复途径可能会对长期健康产生不利影响。 我们旨在研究产前暴露于空气污染与胎盘突变率以及关键胎盘 DNA 修复基因的 DNA 甲基化之间的关系。
这项队列研究使用了正在进行的环境影响早期衰老(ENVIRONAGE)出生队列的数据,该队列在比利时根特的东林堡医院(East-Limburg Hospital)招募了母亲和新生儿(仅单胎出生)的配对。 在出生后采集胎盘 DNA 样本。 我们使用亚硫酸氢盐-PCR-焦磷酸测序来研究 Alu(总体 DNA 突变的标志物)的突变率以及关键 DNA 修复和肿瘤抑制基因(APEX1、OGG1、PARP1、ERCC1、ERCC4、p53 和 DAPK1)的启动子基因的 DNA 甲基化。 我们使用高分辨率空气污染模型根据母体地址估算整个孕期 PM2.5、黑碳和 NO 的暴露量。 用线性回归模型分析 Alu 突变,并用混合效应模型分析所选基因的甲基化值。 效应估计值表示为环境空气污染增量为一个 IQR(即整个队列中暴露的第一四分位数和第三四分位数之间的差异)时的甲基化百分比变化。
从 2010 年 2 月 1 日至 2014 年 12 月 31 日招募的队列中,随机从 814 对母亲和新生儿中选择了 500 个生物库胎盘 DNA 样本,其中 463 个样本符合焦磷酸测序质量控制标准。 IQR 暴露增量分别为 PM2.5 3.84 μg/m、黑碳 0.36 μg/m 和 NO 5.34 μg/m。 在这些样本中,Alu 突变率的增加与 PM2.5(r=0.26,p<0.0001)和黑碳(r=0.33,p<0.0001)的暴露增加有关,但与 NO 无关。 启动子甲基化与 PM2.5 呈正相关,在 APEX1 中为 7.34%(95%CI 0.52 至 14.16,p=0.009),在 OGG1 中为 13.06%(3.88 至 22.24,p=0.005),在 ERCC4 中为 16.31%(5.43 至 27.18,p=0.01),在 p53 中为 10.60%(4.46 至 16.74,p=0.01),而 DAPK1 的启动子甲基化(-12.92%,-22.35 至-3.49,p=0.007)与 PM2.5 暴露呈负相关。 黑碳暴露与 APEX1(9.16%,4.06 至 14.25,p=0.01)和 ERCC4(27.56%,17.58 至 37.55,p<0.0001)的启动子甲基化升高有关。 PARP1 和 ERCC1 中的污染物暴露与启动子甲基化无关,NO 暴露与研究的任何基因中的甲基化无关。
经胎盘宫内暴露于颗粒物与整体胎盘突变率(通过 Alu 测量)增加有关,这与关键 DNA 修复和肿瘤抑制基因的表观遗传改变同时发生。 我们的研究结果表明,暴露于空气污染可以诱导胎儿和新生儿 DNA 修复能力的改变。 未来的研究将是必不可少的,以阐明这些变化是否持续存在,并在以后的生活中在致癌损伤中发挥作用。
欧洲研究理事会和佛兰芒科学基金会。