Suppr超能文献

微管动力学:生物化学与力学的相互作用。

Microtubule dynamics: an interplay of biochemistry and mechanics.

机构信息

Department of Biology, McGill University, Montréal, Quebec, Canada.

Department of Biophysics, University of Texas Southwestern, Dallas, TX, USA.

出版信息

Nat Rev Mol Cell Biol. 2018 Jul;19(7):451-463. doi: 10.1038/s41580-018-0009-y.

Abstract

Microtubules are dynamic polymers of αβ-tubulin that are essential for intracellular organization, organelle trafficking and chromosome segregation. Microtubule growth and shrinkage occur via addition and loss of αβ-tubulin subunits, which are biochemical processes. Dynamic microtubules can also engage in mechanical processes, such as exerting forces by pushing or pulling against a load. Recent advances at the intersection of biochemistry and mechanics have revealed the existence of multiple conformations of αβ-tubulin subunits and their central role in dictating the mechanisms of microtubule dynamics and force generation. It has become apparent that microtubule-associated proteins (MAPs) selectively target specific tubulin conformations to regulate microtubule dynamics, and mechanical forces can also influence microtubule dynamics by altering the balance of tubulin conformations. Importantly, the conformational states of tubulin dimers are likely to be coupled throughout the lattice: the conformation of one dimer can influence the conformation of its nearest neighbours, and this effect can propagate over longer distances. This coupling provides a long-range mechanism by which MAPs and forces can modulate microtubule growth and shrinkage. These findings provide evidence that the interplay between biochemistry and mechanics is essential for the cellular functions of microtubules.

摘要

微管是由αβ-微管蛋白组成的动态聚合物,对于细胞内组织、细胞器运输和染色体分离至关重要。微管的生长和收缩是通过αβ-微管蛋白亚基的添加和丢失来实现的,这是一个生化过程。动态微管还可以参与机械过程,例如通过推或拉对负载施加力。生物化学和力学交叉领域的最新进展揭示了αβ-微管蛋白亚基存在多种构象,它们在决定微管动力学和力产生机制方面起着核心作用。显然,微管相关蛋白(MAPs)选择性地针对特定的微管构象来调节微管动力学,机械力也可以通过改变微管构象的平衡来影响微管动力学。重要的是,微管二聚体的构象状态可能在晶格中相互关联:一个二聚体的构象可以影响其最近邻的构象,这种效应可以在更长的距离上传播。这种关联提供了一种长程机制,通过该机制,MAPs 和力可以调节微管的生长和收缩。这些发现为生物化学和力学之间的相互作用对于微管的细胞功能是必不可少的提供了证据。

相似文献

1
Microtubule dynamics: an interplay of biochemistry and mechanics.
Nat Rev Mol Cell Biol. 2018 Jul;19(7):451-463. doi: 10.1038/s41580-018-0009-y.
2
Long-range, through-lattice coupling improves predictions of microtubule catastrophe.
Mol Biol Cell. 2019 Jun 1;30(12):1451-1462. doi: 10.1091/mbc.E18-10-0641. Epub 2019 Apr 3.
3
Interplay between microtubule dynamics and intracellular organization.
Int J Biochem Cell Biol. 2012 Feb;44(2):266-74. doi: 10.1016/j.biocel.2011.11.009. Epub 2011 Nov 17.
4
The contribution of αβ-tubulin curvature to microtubule dynamics.
J Cell Biol. 2014 Nov 10;207(3):323-34. doi: 10.1083/jcb.201407095.
7
The growth speed of microtubules with XMAP215-coated beads coupled to their ends is increased by tensile force.
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14670-5. doi: 10.1073/pnas.1218053110. Epub 2013 Aug 20.
8
Understanding force-generating microtubule systems through in vitro reconstitution.
Cell Adh Migr. 2016 Sep 2;10(5):475-494. doi: 10.1080/19336918.2016.1241923.
9
Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon.
Eur Biophys J. 2005 Dec;35(1):40-52. doi: 10.1007/s00249-005-0003-0. Epub 2005 Sep 24.
10
Molecular mechanisms underlying microtubule growth dynamics.
Curr Biol. 2021 May 24;31(10):R560-R573. doi: 10.1016/j.cub.2021.02.035.

引用本文的文献

1
Recent Advances in Microtubule Targeting Agents for Cancer Therapy.
Molecules. 2025 Aug 8;30(16):3314. doi: 10.3390/molecules30163314.
2
Microtubules and mechanosensing: key players in endothelial responses to mechanical stimuli.
Cell Mol Life Sci. 2025 Aug 21;82(1):317. doi: 10.1007/s00018-025-05828-0.
3
Mechanisms of microtubule dynamics from single-molecule measurements.
bioRxiv. 2025 Jun 27:2025.06.25.661545. doi: 10.1101/2025.06.25.661545.
4
A biochemical mechanism for Stu2/XMAP215-family microtubule polymerases.
bioRxiv. 2025 Jun 10:2025.06.09.658552. doi: 10.1101/2025.06.09.658552.
5
6
Microtubules in Martini: Parameterizing a heterogeneous elastic-network towards a mechanically accurate microtubule.
PNAS Nexus. 2025 Jun 21;4(7):pgaf202. doi: 10.1093/pnasnexus/pgaf202. eCollection 2025 Jul.
7
Phase Separation Regulates Metabolism, Mitochondria, and Diseases.
MedComm (2020). 2025 Jul 1;6(7):e70283. doi: 10.1002/mco2.70283. eCollection 2025 Jul.
8
Microtubule dynamics are defined by conformations and stability of clustered protofilaments.
Proc Natl Acad Sci U S A. 2025 Jun 3;122(22):e2424263122. doi: 10.1073/pnas.2424263122. Epub 2025 May 29.
9
Modulating the Curvature of Protein Self-Assembled Spiral Nanotubules.
ACS Appl Mater Interfaces. 2025 May 21;17(20):29146-29157. doi: 10.1021/acsami.5c01405. Epub 2025 May 12.
10
Chemically-fueled phase transition of a redox-responsive polymer.
Sci Technol Adv Mater. 2025 Apr 22;26(1):2494496. doi: 10.1080/14686996.2025.2494496. eCollection 2025.

本文引用的文献

2
Structural insight into TPX2-stimulated microtubule assembly.
Elife. 2017 Nov 9;6:e30959. doi: 10.7554/eLife.30959.
3
Homodimeric Kinesin-2 KIF3CC Promotes Microtubule Dynamics.
Biophys J. 2017 Oct 17;113(8):1845-1857. doi: 10.1016/j.bpj.2017.09.015.
4
A structural model for microtubule minus-end recognition and protection by CAMSAP proteins.
Nat Struct Mol Biol. 2017 Nov;24(11):931-943. doi: 10.1038/nsmb.3483. Epub 2017 Oct 9.
5
Microtubule nucleation: beyond the template.
Nat Rev Mol Cell Biol. 2017 Nov;18(11):702-710. doi: 10.1038/nrm.2017.75. Epub 2017 Aug 23.
6
A Tubulin Binding Switch Underlies Kip3/Kinesin-8 Depolymerase Activity.
Dev Cell. 2017 Jul 10;42(1):37-51.e8. doi: 10.1016/j.devcel.2017.06.011.
7
Insight into microtubule disassembly by kinesin-13s from the structure of Kif2C bound to tubulin.
Nat Commun. 2017 Jul 10;8(1):70. doi: 10.1038/s41467-017-00091-9.
8
Structural differences between yeast and mammalian microtubules revealed by cryo-EM.
J Cell Biol. 2017 Sep 4;216(9):2669-2677. doi: 10.1083/jcb.201612195. Epub 2017 Jun 26.
10
Microtubules acquire resistance from mechanical breakage through intralumenal acetylation.
Science. 2017 Apr 21;356(6335):328-332. doi: 10.1126/science.aai8764.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验