Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, 3010, Switzerland.
Department for BioMedical Research, Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, 3008, Switzerland.
Oncogene. 2018 Jul;37(30):4181-4196. doi: 10.1038/s41388-018-0256-6. Epub 2018 May 2.
Poor oxygenation is a common hallmark of solid cancers that strongly associates with aggressive tumor progression and treatment resistance. While a hypoxia-inducible factor 1α (HIF-1α)-associated transcriptional overexpression of the hepatocyte growth factor (HGF) receptor tyrosine kinase (RTK) MET has been previously documented, any regulation of the HIF-1α system through MET downstream signaling in hypoxic tumors has not been yet described. By using MET-driven in vitro as well as ex vivo tumor organotypic fresh tissue models we report that MET targeting results in depletion of HIF-1α and its various downstream targets. Mechanistically, we provide evidence that MET regulates HIF-1α levels through a protein translation mechanism that relies on phosphorylation modulation of the eukaryotic initiation factor 4G1 (eIF4G1) on serine 1232 (Ser-1232). Targeted phosphoproteomics data demonstrate a significant drop in eIF4G1 Ser-1232 phosphorylation following MET targeting, which is linked to an increased affinity between eIF4G1 and eIF4E. Since phosphorylation of eIF4G1 on Ser-1232 is largely mediated through mitogen-activated protein kinase (MAPK), we show that expression of a constitutively active K-RAS variant is sufficient to abrogate the inhibitory effect of MET targeting on the HIF-1α pathway with subsequent resistance of tumor cells to MET targeting under hypoxic conditions. Analysis of The Cancer Genome Atlas data demonstrates frequent co-expression of MET, HIF-1α and eIF4G1 in various solid tumors and its impact on disease-free survival of non-small cell lung cancer patients. Clinical relevance of the MET-eIF4G1-HIF-1α pathway is further supported by a co-occurrence of their expression in common tumor regions of individual lung cancer patients.
缺氧是实体瘤的一个常见特征,与侵袭性肿瘤进展和治疗耐药密切相关。虽然先前已经证明缺氧诱导因子 1α(HIF-1α)相关的肝细胞生长因子(HGF)受体酪氨酸激酶(RTK)MET 的转录过表达,但在缺氧肿瘤中,HIF-1α 系统通过 MET 下游信号的任何调节尚未被描述。通过使用 MET 驱动的体外和离体肿瘤器官型新鲜组织模型,我们报告 MET 靶向导致 HIF-1α 及其各种下游靶标的耗竭。从机制上讲,我们提供的证据表明,MET 通过一种依赖于丝氨酸 1232(Ser-1232)上的真核起始因子 4G1(eIF4G1)磷酸化调节的蛋白质翻译机制来调节 HIF-1α 水平。靶向磷酸化蛋白质组学数据表明,MET 靶向后 eIF4G1 Ser-1232 磷酸化显著下降,这与 eIF4G1 和 eIF4E 之间的亲和力增加有关。由于 eIF4G1 Ser-1232 的磷酸化主要通过丝裂原活化蛋白激酶(MAPK)介导,我们表明表达组成型激活的 K-RAS 变体足以消除 MET 靶向对 HIF-1α 通路的抑制作用,随后在缺氧条件下肿瘤细胞对 MET 靶向的耐药性。对癌症基因组图谱数据的分析表明,MET、HIF-1α 和 eIF4G1 在各种实体瘤中经常共同表达,并对非小细胞肺癌患者的无病生存率产生影响。MET-eIF4G1-HIF-1α 通路的临床相关性进一步得到了单个肺癌患者肿瘤共同区域中其表达的共存的支持。