Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Paris, France.
Adv Exp Med Biol. 2018;1074:69-73. doi: 10.1007/978-3-319-75402-4_9.
The expression of light-sensitive microbial opsins is a promising mutation-independent approach to restore vision in retinal degenerative diseases. Using viral vectors, optogenetic tools can be genetically expressed in various subpopulations of retinal neurons. The choice of cell type depends on the availability of surviving retinal cells. If cones are still alive but they lack outer segments, they can be targeted with optogenetic inhibitors, such as halorhodopsin. Alternatively, it is possible to bypass the photoreceptors and to target bipolar cells. In late-stage degeneration, when bipolar cells degenerate, "artificial photoreceptors" can be made from retinal ganglion cells, but with this approach, upstream retinal processing cannot be utilized. However, when ganglion cells are stimulated directly, higher brain regions might be able to compensate for some loss of retinal processing, which is indicated by clinical studies with epiretinal implants, where patients can perform simple visual tasks. Finally, optogenetics in combination with neuroprotective approaches could serve as a valuable strategy to restore the function of remaining cells, as well as to rescue retinal neurons from progressive degeneration.
光敏微生物视蛋白的表达是一种有前途的、不依赖于突变的方法,可以恢复视网膜退行性疾病的视力。利用病毒载体,光遗传学工具可以在视网膜神经元的各种亚群中进行基因表达。细胞类型的选择取决于存活的视网膜细胞的可用性。如果视锥细胞仍然存活但缺乏外节,它们可以用光遗传学抑制剂(如 halorhodopsin)进行靶向治疗。或者,可以绕过光感受器并靶向双极细胞。在晚期退行性变中,当双极细胞退化时,可以从视网膜神经节细胞中制造“人工光感受器”,但采用这种方法,上游视网膜处理就无法利用了。然而,当直接刺激神经节细胞时,大脑的更高区域可能能够补偿视网膜处理的一些损失,这在视网膜上植入物的临床研究中得到了证实,患者可以执行简单的视觉任务。最后,光遗传学与神经保护方法相结合,可以作为一种有价值的策略,恢复剩余细胞的功能,并防止视网膜神经元进行性退化。