Suppr超能文献

未解决的内质网应激导致免疫抵抗的、潜伏的胰腺癌转移。

Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases.

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

Department of Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

Science. 2018 Jun 15;360(6394). doi: 10.1126/science.aao4908. Epub 2018 May 17.

Abstract

The majority of patients with pancreatic ductal adenocarcinoma (PDA) develop metastatic disease after resection of their primary tumor. We found that livers from patients and mice with PDA harbor single disseminated cancer cells (DCCs) lacking expression of cytokeratin 19 (CK19) and major histocompatibility complex class I (MHCI). We created a mouse model to determine how these DCCs develop. Intraportal injection of immunogenic PDA cells into preimmunized mice seeded livers only with single, nonreplicating DCCs that were CK19 and MHCI The DCCs exhibited an endoplasmic reticulum (ER) stress response but paradoxically lacked both inositol-requiring enzyme 1α activation and expression of the spliced form of transcription factor XBP1 (XBP1s). Inducible expression of XBP1s in DCCs, in combination with T cell depletion, stimulated the outgrowth of macrometastatic lesions that expressed CK19 and MHCI. Thus, unresolved ER stress enables DCCs to escape immunity and establish latent metastases.

摘要

大多数胰腺导管腺癌 (PDA) 患者在切除原发肿瘤后会发展为转移性疾病。我们发现 PDA 患者和小鼠的肝脏中存在缺乏细胞角蛋白 19 (CK19) 和主要组织相容性复合体 I (MHCI) 表达的单个播散性癌细胞 (DCC)。我们创建了一个小鼠模型来确定这些 DCC 是如何发展的。将免疫原性 PDA 细胞门静脉内注射到预先免疫的小鼠中,仅在肝脏中播种单个非复制的 DCC,这些 DCC 为 CK19 和 MHCI。DCC 表现出内质网 (ER) 应激反应,但矛盾的是,既没有肌醇需求酶 1α 激活,也没有转录因子 XBP1 的剪接形式 (XBP1s) 的表达。DCC 中 XBP1s 的诱导表达,结合 T 细胞耗竭,刺激了表达 CK19 和 MHCI 的大转移灶的生长。因此,未解决的 ER 应激使 DCC 能够逃避免疫并建立潜伏转移。

相似文献

1
Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases.
Science. 2018 Jun 15;360(6394). doi: 10.1126/science.aao4908. Epub 2018 May 17.
2
ER stress and distinct outputs of the IRE1α RNase control proliferation and senescence in response to oncogenic Ras.
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9900-9905. doi: 10.1073/pnas.1701757114. Epub 2017 Aug 28.
3
Sigmar1 regulates endoplasmic reticulum stress-induced C/EBP-homologous protein expression in cardiomyocytes.
Biosci Rep. 2017 Jul 16;37(4). doi: 10.1042/BSR20170898. Print 2017 Aug 31.
4
Farnesoid X receptor signaling activates the hepatic X-box binding protein 1 pathway in vitro and in mice.
Hepatology. 2018 Jul;68(1):304-316. doi: 10.1002/hep.29815. Epub 2018 May 10.
6
PHLDA3 overexpression in hepatocytes by endoplasmic reticulum stress via IRE1-Xbp1s pathway expedites liver injury.
Gut. 2016 Aug;65(8):1377-88. doi: 10.1136/gutjnl-2014-308506. Epub 2015 May 12.
7
Novel mechanism of enhancing IRE1α-XBP1 signalling via the PERK-ATF4 pathway.
Sci Rep. 2016 Apr 7;6:24217. doi: 10.1038/srep24217.
8
Coupling of COPII vesicle trafficking to nutrient availability by the IRE1α-XBP1s axis.
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11776-11785. doi: 10.1073/pnas.1814480116. Epub 2019 May 23.
9
ATF6 upregulates XBP1S and inhibits ER stress-mediated apoptosis in osteoarthritis cartilage.
Cell Signal. 2014 Feb;26(2):332-42. doi: 10.1016/j.cellsig.2013.11.018. Epub 2013 Nov 21.
10
IRE1α dissociates with BiP and inhibits ER stress-mediated apoptosis in cartilage development.
Cell Signal. 2013 Nov;25(11):2136-46. doi: 10.1016/j.cellsig.2013.06.011. Epub 2013 Jun 29.

引用本文的文献

2
Endoplasmic Reticulum Stress in Cancer.
MedComm (2020). 2025 Jun 19;6(7):e70263. doi: 10.1002/mco2.70263. eCollection 2025 Jul.
3
Selection and validation of reference genes for RT-qPCR normalization in dormant cancer cells.
Sci Rep. 2025 May 31;15(1):19160. doi: 10.1038/s41598-025-02951-7.
4
Rationally designed anti-autophagy nanosystems for reversing the immunosuppressive network in the tumor environment.
Nanomedicine (Lond). 2025 Jun;20(12):1429-1440. doi: 10.1080/17435889.2025.2508133. Epub 2025 May 22.
5
PCSK9 drives sterol-dependent metastatic organ choice in pancreatic cancer.
Nature. 2025 May 21. doi: 10.1038/s41586-025-09017-8.
9
Towards understanding cancer dormancy over strategic hitching up mechanisms to technologies.
Mol Cancer. 2025 Feb 14;24(1):47. doi: 10.1186/s12943-025-02250-9.
10
Advances in Vaccine-Based Therapies for Pancreatic Cancer.
J Gastrointest Cancer. 2025 Feb 12;56(1):62. doi: 10.1007/s12029-025-01165-4.

本文引用的文献

1
T-cell Localization, Activation, and Clonal Expansion in Human Pancreatic Ductal Adenocarcinoma.
Cancer Immunol Res. 2017 Nov;5(11):978-991. doi: 10.1158/2326-6066.CIR-16-0322. Epub 2017 Oct 24.
3
Emerging Role of the Unfolded Protein Response in Tumor Immunosurveillance.
Trends Cancer. 2017 Jul;3(7):491-505. doi: 10.1016/j.trecan.2017.05.005. Epub 2017 Jul 6.
4
Upholding a role for EMT in pancreatic cancer metastasis.
Nature. 2017 Jul 5;547(7661):E7-E8. doi: 10.1038/nature22963.
6
Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma.
Oncoimmunology. 2016 Oct 7;5(12):e1240859. doi: 10.1080/2162402X.2016.1240859. eCollection 2016.
7
Immune Cytolytic Activity Stratifies Molecular Subsets of Human Pancreatic Cancer.
Clin Cancer Res. 2017 Jun 15;23(12):3129-3138. doi: 10.1158/1078-0432.CCR-16-2128. Epub 2016 Dec 22.
8
Tumor-Induced IL-6 Reprograms Host Metabolism to Suppress Anti-tumor Immunity.
Cell Metab. 2016 Nov 8;24(5):672-684. doi: 10.1016/j.cmet.2016.10.010.
10
Circulating and disseminated tumour cells - mechanisms of immune surveillance and escape.
Nat Rev Clin Oncol. 2017 Mar;14(3):155-167. doi: 10.1038/nrclinonc.2016.144. Epub 2016 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验