Suppr超能文献

镰状细胞病严重程度的生物标志物特征

Biomarker signatures of sickle cell disease severity.

作者信息

Du Mengtian, Van Ness Sarah, Gordeuk Victor, Nouraie Sayed M, Nekhai Sergei, Gladwin Mark, Steinberg Martin H, Sebastiani Paola

机构信息

Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, United States.

Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, United States.

出版信息

Blood Cells Mol Dis. 2018 Sep;72:1-9. doi: 10.1016/j.bcmd.2018.05.001. Epub 2018 May 16.

Abstract

Identifying sickle cell disease patients at high risk of complications could lead to personalized treatment and better prognosis but despite many advances prediction of the clinical course of these patients remains elusive. We propose a system-type approach to discover profiles of multiple, common biomarkers that correlate with morbidity and mortality in sickle cell disease. We used cluster analysis to discover 17 signatures of 17 common circulating biomarkers in 2320 participants of the Cooperative Study of Sickle Cell Disease, and evaluated the association of these signatures with risk for stroke, pain, leg ulceration, acute chest syndrome, avascular necrosis, seizure, death, and trend of fetal hemoglobin and hemolysis using longitudinally collected data. The analysis shows that some of the signatures are associated with reduced risk for complications, while others are associated with increased risk for complications. We also show that these signatures repeat in two more contemporary studies of sickle cell disease and correlate with recently discovered biomarkers of pulmonary vascular disease. With replication and further study, these biomarker signatures could become an important and affordable precision medicine tool to aid treatment and management of the disease.

摘要

识别镰状细胞病并发症高危患者可实现个性化治疗并改善预后,但尽管取得了诸多进展,预测这些患者的临床病程仍然困难重重。我们提出一种系统性方法,以发现与镰状细胞病发病率和死亡率相关的多种常见生物标志物的特征。我们使用聚类分析在2320名镰状细胞病合作研究参与者中发现了17种常见循环生物标志物的17种特征,并利用纵向收集的数据评估了这些特征与中风、疼痛、腿部溃疡、急性胸综合征、无血管性坏死、癫痫发作、死亡风险以及胎儿血红蛋白和溶血趋势之间的关联。分析表明,一些特征与并发症风险降低相关,而另一些则与并发症风险增加相关。我们还表明,这些特征在另外两项当代镰状细胞病研究中重复出现,并与最近发现的肺血管疾病生物标志物相关。通过重复验证和进一步研究,这些生物标志物特征可能成为一种重要且经济实惠的精准医学工具,有助于疾病的治疗和管理。

相似文献

1
Biomarker signatures of sickle cell disease severity.
Blood Cells Mol Dis. 2018 Sep;72:1-9. doi: 10.1016/j.bcmd.2018.05.001. Epub 2018 May 16.
5
Minireview: Genetic basis of heterogeneity and severity in sickle cell disease.
Exp Biol Med (Maywood). 2016 Apr;241(7):689-96. doi: 10.1177/1535370216636726. Epub 2016 Mar 1.
6
Sickle cell disease at the dawn of the molecular era.
Hemoglobin. 2009;33 Suppl 1:S93-S106. doi: 10.3109/03630260903347617.
7
Changes in autonomic nervous activity during vaso-occlusive crisis in patients with sickle cell anaemia.
Br J Haematol. 2017 May;177(3):484-486. doi: 10.1111/bjh.14064. Epub 2016 Mar 24.
8
Minireview: Multiomic candidate biomarkers for clinical manifestations of sickle cell severity: Early steps to precision medicine.
Exp Biol Med (Maywood). 2016 Apr;241(7):772-81. doi: 10.1177/1535370216640150. Epub 2016 Mar 27.
10
Prediction of adverse outcomes in children with sickle cell disease.
N Engl J Med. 2000 Jan 13;342(2):83-9. doi: 10.1056/NEJM200001133420203.

引用本文的文献

1
Genetic Patterns of Oral Cavity Microbiome in Patients with Sickle Cell Disease.
Int J Mol Sci. 2024 Aug 6;25(16):8570. doi: 10.3390/ijms25168570.
2
Sickle Cell Disease Update: New Treatments and Challenging Nutritional Interventions.
Nutrients. 2024 Jan 15;16(2):258. doi: 10.3390/nu16020258.
5
Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission.
Lancet Haematol. 2023 Aug;10(8):e633-e686. doi: 10.1016/S2352-3026(23)00096-0. Epub 2023 Jul 11.
6
Sickle cell anemia: hierarchical cluster analysis and clinical profile in a cohort in Brazil.
Hematol Transfus Cell Ther. 2023 Jan-Mar;45(1):45-51. doi: 10.1016/j.htct.2021.08.015. Epub 2021 Dec 9.
9
A phenotypic risk score for predicting mortality in sickle cell disease.
Br J Haematol. 2021 Mar;192(5):932-941. doi: 10.1111/bjh.17342. Epub 2021 Jan 28.

本文引用的文献

1
A phased SNP-based classification of sickle cell anemia HBB haplotypes.
BMC Genomics. 2017 Aug 11;18(1):608. doi: 10.1186/s12864-017-4013-y.
2
Genome-wide association study to identify variants associated with acute severe vaso-occlusive pain in sickle cell anemia.
Blood. 2017 Aug 3;130(5):686-688. doi: 10.1182/blood-2017-02-769661. Epub 2017 Jun 5.
3
Sickle Cell Disease.
N Engl J Med. 2017 Apr 20;376(16):1561-1573. doi: 10.1056/NEJMra1510865.
4
Association of circulating transcriptomic profiles with mortality in sickle cell disease.
Blood. 2017 Jun 1;129(22):3009-3016. doi: 10.1182/blood-2016-11-752279. Epub 2017 Apr 3.
5
Intravascular hemolysis and the pathophysiology of sickle cell disease.
J Clin Invest. 2017 Mar 1;127(3):750-760. doi: 10.1172/JCI89741.
6
Biomarker signatures of aging.
Aging Cell. 2017 Apr;16(2):329-338. doi: 10.1111/acel.12557. Epub 2017 Jan 6.
7
Detection of Significant Groups in Hierarchical Clustering by Resampling.
Front Genet. 2016 Aug 8;7:144. doi: 10.3389/fgene.2016.00144. eCollection 2016.
8
Variants of ZBTB7A (LRF) and its β-globin gene cluster binding motifs in sickle cell anemia.
Blood Cells Mol Dis. 2016 Jul;59:49-51. doi: 10.1016/j.bcmd.2016.04.001. Epub 2016 Apr 13.
9
Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin.
Science. 2016 Jan 15;351(6270):285-9. doi: 10.1126/science.aad3312.
10
Severity of Brazilian sickle cell disease patients: severity scores and feasibility of the Bayesian network model use.
Blood Cells Mol Dis. 2015 Apr;54(4):321-7. doi: 10.1016/j.bcmd.2015.01.011. Epub 2015 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验