Suppr超能文献

球型结构 3D 体外肿瘤模型设计 - 进展与展望。

Design of spherically structured 3D in vitro tumor models -Advances and prospects.

机构信息

Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.

Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.

出版信息

Acta Biomater. 2018 Jul 15;75:11-34. doi: 10.1016/j.actbio.2018.05.034. Epub 2018 May 23.

Abstract

UNLABELLED

Three-dimensional multicellular tumor models are receiving an ever-growing focus as preclinical drug-screening platforms due to their potential to recapitulate major physiological features of human tumors in vitro. In line with this momentum, the technologies for assembly of 3D microtumors are rapidly evolving towards a comprehensive inclusion of tumor microenvironment elements. Customized spherically structured platforms, including microparticles and microcapsules, provide a robust and scalable technology to imprint unique biomolecular tumor microenvironment hallmarks into 3D in vitro models. Herein, a comprehensive overview of novel advances on the integration of tumor-ECM components and biomechanical cues into 3D in vitro models assembled in spherical shaped platforms is provided. Future improvements regarding spatiotemporal/mechanical adaptability, and degradability, during microtumors in vitro 3D culture are also critically discussed considering the realistic potential of these platforms to mimic the dynamic tumor microenvironment. From a global perspective, the production of 3D multicellular spheroids with tumor ECM components included in spherical models will unlock their potential to be used in high-throughput screening of therapeutic compounds. It is envisioned, in a near future, that a combination of spherically structured 3D microtumor models with other advanced microfluidic technologies will properly recapitulate the flow dynamics of human tumors in vitro.

STATEMENT OF SIGNIFICANCE

The ability to correctly mimic the complexity of the tumor microenvironment in vitro is a key aspect for the development of evermore realistic in vitro models for drug-screening and fundamental cancer biology studies. In this regard, conventional spheroid-based 3D tumor models, combined with spherically structured biomaterials, opens the opportunity to precisely recapitulate complex cell-extracellular matrix interactions and tumor compartmentalization. This review provides an in-depth focus on current developments regarding spherically structured scaffolds engineered into in vitro 3D tumor models, and discusses future advances toward all-encompassing platforms that may provide an improved in vitro/in vivo correlation in a foreseeable future.

摘要

未加标签

由于三维多细胞肿瘤模型具有在体外重现人类肿瘤主要生理特征的潜力,因此作为临床前药物筛选平台,它们越来越受到关注。顺应这一发展趋势,用于组装三维微肿瘤的技术正迅速发展,全面纳入肿瘤微环境元素。定制的球形结构平台,包括微球和微胶囊,为将独特的生物分子肿瘤微环境特征印迹到三维体外模型中提供了强大且可扩展的技术。本文全面概述了将肿瘤细胞外基质成分和生物力学线索整合到球形平台组装的三维体外模型中的最新进展。还从这些平台模拟动态肿瘤微环境的实际潜力的角度,批判性地讨论了在微肿瘤体外三维培养过程中,时空/机械适应性和可降解性方面的未来改进。从全球角度来看,在包含肿瘤细胞外基质成分的球形模型中生产具有三维多细胞球体的能力将释放其用于治疗化合物高通量筛选的潜力。可以预见,在不久的将来,球形结构的 3D 微肿瘤模型与其他先进的微流控技术的结合将能够正确模拟人类肿瘤的体外流动动力学。

意义声明

在体外正确模拟肿瘤微环境的复杂性是开发用于药物筛选和基础癌症生物学研究的更真实体外模型的关键方面。在这方面,结合球形生物材料的传统基于球体的 3D 肿瘤模型为精确再现复杂的细胞-细胞外基质相互作用和肿瘤区室化提供了机会。本综述深入关注了当前关于工程化到体外 3D 肿瘤模型中的球形结构支架的最新进展,并讨论了未来朝着全面涵盖平台的进展,这些平台可能在可预见的未来提供改进的体外/体内相关性。

相似文献

1
Design of spherically structured 3D in vitro tumor models -Advances and prospects.
Acta Biomater. 2018 Jul 15;75:11-34. doi: 10.1016/j.actbio.2018.05.034. Epub 2018 May 23.
2
In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
Acta Biomater. 2019 Aug;94:392-409. doi: 10.1016/j.actbio.2019.06.012. Epub 2019 Jun 12.
3
Stratified 3D Microtumors as Organotypic Testing Platforms for Screening Pancreatic Cancer Therapies.
Small Methods. 2021 May;5(5):e2001207. doi: 10.1002/smtd.202001207. Epub 2021 Feb 10.
4
Recent advances in spheroid-based microfluidic models to mimic the tumour microenvironment.
Analyst. 2022 May 17;147(10):2023-2034. doi: 10.1039/d2an00172a.
5
Organotypic 3D decellularized matrix tumor spheroids for high-throughput drug screening.
Biomaterials. 2021 Aug;275:120983. doi: 10.1016/j.biomaterials.2021.120983. Epub 2021 Jun 21.
6
Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids.
Biomaterials. 2018 Dec;185:155-173. doi: 10.1016/j.biomaterials.2018.09.007. Epub 2018 Sep 13.
7
Spheroid-Hydrogel-Integrated Biomimetic System: A New Frontier in Advanced Three-Dimensional Cell Culture Technology.
Cells Tissues Organs. 2025;214(2):128-147. doi: 10.1159/000541416. Epub 2024 Sep 12.
8
Recent Advances in Multicellular Tumor Spheroid Generation for Drug Screening.
Biosensors (Basel). 2021 Nov 11;11(11):445. doi: 10.3390/bios11110445.
9
Hydrogel 3D in vitro tumor models for screening cell aggregation mediated drug response.
Biomater Sci. 2020 Mar 31;8(7):1855-1864. doi: 10.1039/c9bm02075f.

引用本文的文献

1
Bridging the gap: the role of 3D cell cultures in mimicking tumor microenvironment for enhanced drug testing accuracy.
Front Bioeng Biotechnol. 2025 Aug 12;13:1498141. doi: 10.3389/fbioe.2025.1498141. eCollection 2025.
2
Harnessing 3D cell models and high-resolution imaging to unveil the mechanisms of nanoparticle-mediated drug delivery.
Front Bioeng Biotechnol. 2025 Jul 7;13:1606573. doi: 10.3389/fbioe.2025.1606573. eCollection 2025.
3
Three-dimensional spheroid models for cardiovascular biology and pathology.
Mechanobiol Med. 2025 Jun 28;3(3):100144. doi: 10.1016/j.mbm.2025.100144. eCollection 2025 Sep.
4
Hydrogel composite scaffold repairs knee cartilage defects: a systematic review.
RSC Adv. 2025 Apr 8;15(13):10337-10364. doi: 10.1039/d5ra01031d. eCollection 2025 Mar 28.
5
3D Microtumors Representing Ovarian Cancer Minimal Residual Disease Respond to the Fatty Acid Oxidation Inhibitor Perhexiline.
Adv Healthc Mater. 2025 May;14(14):e2404072. doi: 10.1002/adhm.202404072. Epub 2025 Feb 9.
6
Exploring oncology treatment strategies with tyrosine kinase inhibitors through advanced 3D models (Review).
Med Int (Lond). 2024 Dec 20;5(2):13. doi: 10.3892/mi.2024.212. eCollection 2025 Mar-Apr.
7
Perspective of 3D culture in medicine: transforming disease research and therapeutic applications.
Front Bioeng Biotechnol. 2024 Dec 19;12:1491669. doi: 10.3389/fbioe.2024.1491669. eCollection 2024.
10
Photo/thermo-sensitive chitosan and gelatin-based interpenetrating polymer network for mimicking muscle tissue extracellular matrix.
Heliyon. 2024 Oct 24;10(21):e39820. doi: 10.1016/j.heliyon.2024.e39820. eCollection 2024 Nov 15.

本文引用的文献

1
Toward the Broad Adoption of 3D Tumor Models in the Cancer Drug Pipeline.
ACS Biomater Sci Eng. 2015 Oct 12;1(10):877-894. doi: 10.1021/acsbiomaterials.5b00172. Epub 2015 Sep 11.
2
3
Designing compartmentalized hydrogel microparticles for cell encapsulation and scalable 3D cell culture.
J Mater Chem B. 2015 Jan 21;3(3):353-360. doi: 10.1039/c4tb01735h. Epub 2014 Dec 4.
4
Electrospinning PCL Scaffolds Manufacture for Three-Dimensional Breast Cancer Cell Culture.
Polymers (Basel). 2017 Aug 1;9(8):328. doi: 10.3390/polym9080328.
5
Beyond Tissue Stiffness and Bioadhesivity: Advanced Biomaterials to Model Tumor Microenvironments and Drug Resistance.
Trends Cancer. 2018 Apr;4(4):281-291. doi: 10.1016/j.trecan.2018.01.008. Epub 2018 Mar 10.
6
Comparative Study of Multicellular Tumor Spheroid Formation Methods and Implications for Drug Screening.
ACS Biomater Sci Eng. 2018 Feb 12;4(2):410-420. doi: 10.1021/acsbiomaterials.7b00069. Epub 2017 Mar 13.
7
The Current Landscape of 3D In Vitro Tumor Models: What Cancer Hallmarks Are Accessible for Drug Discovery?
Adv Healthc Mater. 2018 Apr;7(8):e1701174. doi: 10.1002/adhm.201701174. Epub 2018 Jan 19.
8
Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models.
Adv Healthc Mater. 2018 Feb;7(4). doi: 10.1002/adhm.201701165. Epub 2018 Jan 18.
9
Extracellular matrix composition modulates angiosarcoma cell attachment and proliferation.
Oncoscience. 2017 Dec 7;4(11-12):178-188. doi: 10.18632/oncoscience.383. eCollection 2017 Nov.
10
Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass.
Bioeng Transl Med. 2017 Sep 26;2(3):268-277. doi: 10.1002/btm2.10079. eCollection 2017 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验