Suppr超能文献

探索直接面向消费者的基因组测试数据在预测药物不良事件方面的潜力。

Exploring the Potential of Direct-To-Consumer Genomic Test Data for Predicting Adverse Drug Events.

作者信息

Zhang Patrick M, Sarkar Indra Neil

机构信息

Center for Biomedical Informatics, Brown University, Providence, RI.

出版信息

AMIA Jt Summits Transl Sci Proc. 2018 May 18;2017:247-256. eCollection 2018.

Abstract

Recent technological advancements in genetic testing and the growing accessibility of public genomic data provide researchers with a unique avenue to approach personalized medicine. This feasibility study examined the potential of direct-to-consumer (DTC) genomic tests (focusing on 23andMe) in research and clinical applications. In particular, we combined population genetics information from the Personal Genome Project with adverse event reports from AEOLUS and pharmacogenetic information from PharmGKB. Primarily, associations between drugs based on co-occurring genetic variations and associations between variants and adverse events were used to assess the potential for leveraging single nucleotide polymorphism information from 23andMe. The results of this study suggest potential clinical uses of DTC tests in light of potential drug interactions. Furthermore, the results suggest great potential for analyzing associations at a population level to facilitate knowledge discovery in the realm of predicting adverse drug events.

摘要

基因检测领域近期的技术进步以及公共基因组数据越来越高的可获取性,为研究人员提供了一条通向个性化医疗的独特途径。这项可行性研究考察了直接面向消费者(DTC)的基因检测(以23andMe为重点)在研究和临床应用中的潜力。具体而言,我们将来自个人基因组计划的群体遗传学信息与来自AEOLUS的不良事件报告以及来自PharmGKB的药物遗传学信息相结合。主要利用基于共同出现的基因变异的药物之间的关联以及变异与不良事件之间的关联,来评估利用来自23andMe的单核苷酸多态性信息的潜力。这项研究的结果表明,鉴于潜在的药物相互作用,DTC检测具有潜在的临床用途。此外,结果表明在群体水平分析关联以促进药物不良事件预测领域的知识发现具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f868/5961769/e42d32035884/2840779f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验