Suppr超能文献

一种快速且无辐射的示踪剂成像方式——磁粒子成像的前景,有望实现临床转化。

A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation.

作者信息

Chandrasekharan Prashant, Tay Zhi Wei, Zhou Xinyi Yedda, Yu Elaine, Orendorff Ryan, Hensley Daniel, Huynh Quincy, Fung K L Barry, VanHook Caylin Colson, Goodwill Patrick, Zheng Bo, Conolly Steven

机构信息

1 Department of Bioengineering, University of California , Berkeley, CA , USA.

2 Magnetic Insight Inc , Alameda, CA , USA.

出版信息

Br J Radiol. 2018 Nov;91(1091):20180326. doi: 10.1259/bjr.20180326. Epub 2018 Jun 21.

Abstract

Magnetic particle imaging (MPI), introduced at the beginning of the twenty-first century, is emerging as a promising diagnostic tool in addition to the current repertoire of medical imaging modalities. Using superparamagnetic iron oxide nanoparticles (SPIOs), that are available for clinical use, MPI produces high contrast and highly sensitive tomographic images with absolute quantitation, no tissue attenuation at-depth, and there are no view limitations. The MPI signal is governed by the Brownian and Néel relaxation behavior of the particles. The relaxation time constants of these particles can be utilized to map information relating to the local microenvironment, such as viscosity and temperature. Proof-of-concept pre-clinical studies have shown favourable applications of MPI for better understanding the pathophysiology associated with vascular defects, tracking cell-based therapies and nanotheranostics. Functional imaging techniques using MPI will be useful for studying the pathology related to viscosity changes such as in vascular plaques and in determining cell viability of superparamagnetic iron oxide nanoparticle labeled cells. In this review article, an overview of MPI is provided with discussions mainly focusing on MPI tracers, applications of translational capabilities ranging from diagnostics to theranostics and finally outline a promising path towards clinical translation.

摘要

磁粒子成像(MPI)于21世纪初问世,正成为一种有前景的诊断工具,补充了当前的医学成像方式。利用临床可用的超顺磁性氧化铁纳米颗粒(SPIOs),MPI可生成具有高对比度和高灵敏度的断层图像,具备绝对定量功能,不存在深度组织衰减,且无视野限制。MPI信号由颗粒的布朗弛豫和奈尔弛豫行为决定。这些颗粒的弛豫时间常数可用于绘制与局部微环境相关的信息,如粘度和温度。概念验证的临床前研究表明,MPI在更好地理解与血管缺陷相关的病理生理学、追踪基于细胞的治疗和纳米诊疗方面有良好应用。使用MPI的功能成像技术将有助于研究与粘度变化相关的病理学,如血管斑块中的粘度变化,以及确定超顺磁性氧化铁纳米颗粒标记细胞的细胞活力。在这篇综述文章中,提供了MPI的概述,讨论主要集中在MPI示踪剂、从诊断到诊疗的转化能力应用,最后概述了一条通往临床转化的光明之路。

相似文献

2
Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking.
Curr Opin Chem Biol. 2018 Aug;45:131-138. doi: 10.1016/j.cbpa.2018.04.014. Epub 2018 May 10.
4
Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging.
Biomaterials. 2013 May;34(15):3837-45. doi: 10.1016/j.biomaterials.2013.01.087. Epub 2013 Feb 21.
5
Magnetic Particle Imaging for Highly Sensitive, Quantitative, and Safe in Vivo Gut Bleed Detection in a Murine Model.
ACS Nano. 2017 Dec 26;11(12):12067-12076. doi: 10.1021/acsnano.7b04844. Epub 2017 Nov 30.
6
Magnetic Particle Imaging: A Novel in Vivo Imaging Platform for Cancer Detection.
Nano Lett. 2017 Mar 8;17(3):1648-1654. doi: 10.1021/acs.nanolett.6b04865. Epub 2017 Feb 21.
7
Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging.
Nano Lett. 2018 Jan 10;18(1):182-189. doi: 10.1021/acs.nanolett.7b03829. Epub 2017 Dec 15.
8
Seeing SPIOs Directly In Vivo with Magnetic Particle Imaging.
Mol Imaging Biol. 2017 Jun;19(3):385-390. doi: 10.1007/s11307-017-1081-y.
9
Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality.
Adv Mater. 2024 Apr;36(17):e2306450. doi: 10.1002/adma.202306450. Epub 2023 Dec 7.
10
Magnetic Particle Imaging: Current Applications in Biomedical Research.
J Magn Reson Imaging. 2020 Jun;51(6):1659-1668. doi: 10.1002/jmri.26875. Epub 2019 Jul 22.

引用本文的文献

1
Characterization and Evaluation of Commercial Tracers for X-Space Magnetic Particle Imaging.
J Magn Magn Mater. 2025 May 15;620. doi: 10.1016/j.jmmm.2025.172889. Epub 2025 Feb 16.
2
Flame-Made Doped Iron Oxide Nanoparticles as Tracers for Magnetic Particle Imaging.
Chem Mater. 2025 May 20;37(11):4071-4084. doi: 10.1021/acs.chemmater.5c00331. eCollection 2025 Jun 10.
3
Advances in engineering nanoparticles for magnetic particle imaging (MPI).
Sci Adv. 2025 Jan 10;11(2):eado7356. doi: 10.1126/sciadv.ado7356. Epub 2025 Jan 8.
5
High-efficiency magnetophoretic labelling of adoptively-transferred T cells for longitudinal Magnetic Particle Imaging.
Theranostics. 2024 Sep 23;14(16):6138-6160. doi: 10.7150/thno.95527. eCollection 2024.
6
Temperature-Dependent Changes in Resolution and Coercivity of Superparamagnetic and Superferromagnetic Iron Oxide Nanoparticles.
Int J Magn Part Imaging. 2023;9(1 Suppl1). doi: 10.18416/IJMPI.2023.2303056. Epub 2023 Mar 19.
7
Advances in Vascular Diagnostics using Magnetic Particle Imaging (MPI) for Blood Circulation Assessment.
Adv Healthc Mater. 2024 Sep;13(23):e2400612. doi: 10.1002/adhm.202400612. Epub 2024 Jun 28.
8
Post-synthesis Oxidation of Superparamagnetic Iron Oxide Nanoparticles to Enhance Magnetic Particle Imaging Performance.
ACS Appl Nano Mater. 2024 Jan 12;7(1):279-291. doi: 10.1021/acsanm.3c04442. Epub 2023 Dec 22.
9
Magnetic Particle Imaging-Guided Hyperthermia for Precise Treatment of Cancer: Review, Challenges, and Prospects.
Mol Imaging Biol. 2023 Dec;25(6):1020-1033. doi: 10.1007/s11307-023-01856-z. Epub 2023 Oct 3.
10
Dual imaging agent for magnetic particle imaging and computed tomography.
Nanoscale Adv. 2023 May 1;5(11):3018-3032. doi: 10.1039/d3na00105a. eCollection 2023 May 30.

本文引用的文献

1
In vivo tracking and quantification of inhaled aerosol using magnetic particle imaging towards inhaled therapeutic monitoring.
Theranostics. 2018 Jun 8;8(13):3676-3687. doi: 10.7150/thno.26608. eCollection 2018.
2
Magnetic particle imaging for radiation-free, sensitive and high-contrast vascular imaging and cell tracking.
Curr Opin Chem Biol. 2018 Aug;45:131-138. doi: 10.1016/j.cbpa.2018.04.014. Epub 2018 May 10.
3
Rodent Cerebral Blood Volume (CBV) changes during hypercapnia observed using Magnetic Particle Imaging (MPI) detection.
Neuroimage. 2018 Sep;178:713-720. doi: 10.1016/j.neuroimage.2018.05.004. Epub 2018 May 5.
4
Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models.
Quant Imaging Med Surg. 2018 Mar;8(2):114-122. doi: 10.21037/qims.2018.02.06.
6
Nanoparticles in the clinic.
Bioeng Transl Med. 2016 Jun 3;1(1):10-29. doi: 10.1002/btm2.10003. eCollection 2016 Mar.
7
The Relaxation Wall: Experimental Limits to Improving MPI Spatial Resolution by Increasing Nanoparticle Core size.
Biomed Phys Eng Express. 2017 Jun;3(3). doi: 10.1088/2057-1976/aa6ab6. Epub 2017 Apr 27.
8
Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging.
Nano Lett. 2018 Jan 10;18(1):182-189. doi: 10.1021/acs.nanolett.7b03829. Epub 2017 Dec 15.
9
Magnetic Particle Imaging for Highly Sensitive, Quantitative, and Safe in Vivo Gut Bleed Detection in a Murine Model.
ACS Nano. 2017 Dec 26;11(12):12067-12076. doi: 10.1021/acsnano.7b04844. Epub 2017 Nov 30.
10
Prediction of Anti-cancer Nanotherapy Efficacy by Imaging.
Nanotheranostics. 2017 Jul 6;1(3):296-312. doi: 10.7150/ntno.20564. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验