Chandrasekharan Prashant, Tay Zhi Wei, Zhou Xinyi Yedda, Yu Elaine, Orendorff Ryan, Hensley Daniel, Huynh Quincy, Fung K L Barry, VanHook Caylin Colson, Goodwill Patrick, Zheng Bo, Conolly Steven
1 Department of Bioengineering, University of California , Berkeley, CA , USA.
2 Magnetic Insight Inc , Alameda, CA , USA.
Br J Radiol. 2018 Nov;91(1091):20180326. doi: 10.1259/bjr.20180326. Epub 2018 Jun 21.
Magnetic particle imaging (MPI), introduced at the beginning of the twenty-first century, is emerging as a promising diagnostic tool in addition to the current repertoire of medical imaging modalities. Using superparamagnetic iron oxide nanoparticles (SPIOs), that are available for clinical use, MPI produces high contrast and highly sensitive tomographic images with absolute quantitation, no tissue attenuation at-depth, and there are no view limitations. The MPI signal is governed by the Brownian and Néel relaxation behavior of the particles. The relaxation time constants of these particles can be utilized to map information relating to the local microenvironment, such as viscosity and temperature. Proof-of-concept pre-clinical studies have shown favourable applications of MPI for better understanding the pathophysiology associated with vascular defects, tracking cell-based therapies and nanotheranostics. Functional imaging techniques using MPI will be useful for studying the pathology related to viscosity changes such as in vascular plaques and in determining cell viability of superparamagnetic iron oxide nanoparticle labeled cells. In this review article, an overview of MPI is provided with discussions mainly focusing on MPI tracers, applications of translational capabilities ranging from diagnostics to theranostics and finally outline a promising path towards clinical translation.
磁粒子成像(MPI)于21世纪初问世,正成为一种有前景的诊断工具,补充了当前的医学成像方式。利用临床可用的超顺磁性氧化铁纳米颗粒(SPIOs),MPI可生成具有高对比度和高灵敏度的断层图像,具备绝对定量功能,不存在深度组织衰减,且无视野限制。MPI信号由颗粒的布朗弛豫和奈尔弛豫行为决定。这些颗粒的弛豫时间常数可用于绘制与局部微环境相关的信息,如粘度和温度。概念验证的临床前研究表明,MPI在更好地理解与血管缺陷相关的病理生理学、追踪基于细胞的治疗和纳米诊疗方面有良好应用。使用MPI的功能成像技术将有助于研究与粘度变化相关的病理学,如血管斑块中的粘度变化,以及确定超顺磁性氧化铁纳米颗粒标记细胞的细胞活力。在这篇综述文章中,提供了MPI的概述,讨论主要集中在MPI示踪剂、从诊断到诊疗的转化能力应用,最后概述了一条通往临床转化的光明之路。