Suppr超能文献

未来的变暖增加了全球同步玉米生产冲击的可能性。

Future warming increases probability of globally synchronized maize production shocks.

机构信息

Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195;

Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195.

出版信息

Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6644-6649. doi: 10.1073/pnas.1718031115. Epub 2018 Jun 11.

Abstract

Meeting the global food demand of roughly 10 billion people by the middle of the 21st century will become increasingly challenging as the Earth's climate continues to warm. Earlier studies suggest that once the optimum growing temperature is exceeded, mean crop yields decline and the variability of yield increases even if interannual climate variability remains unchanged. Here, we use global datasets of maize production and climate variability combined with future temperature projections to quantify how yield variability will change in the world's major maize-producing and -exporting countries under 2 °C and 4 °C of global warming. We find that as the global mean temperature increases, absent changes in temperature variability or breeding gains in heat tolerance, the coefficient of variation (CV) of maize yields increases almost everywhere to values much larger than present-day values. This higher CV is due both to an increase in the SD of yields and a decrease in mean yields. For the top four maize-exporting countries, which account for 87% of global maize exports, the probability that they have simultaneous production losses greater than 10% in any given year is presently virtually zero, but it increases to 7% under 2 °C warming and 86% under 4 °C warming. Our results portend rising instability in global grain trade and international grain prices, affecting especially the ∼800 million people living in extreme poverty who are most vulnerable to food price spikes. They also underscore the urgency of investments in breeding for heat tolerance.

摘要

到 21 世纪中叶,要满足全球约 100 亿人口的粮食需求,将变得越来越具有挑战性,因为地球的气候将持续变暖。早期的研究表明,一旦超过最佳生长温度,平均作物产量就会下降,即使年际气候变率保持不变,产量的可变性也会增加。在这里,我们使用全球玉米产量和气候变率数据集以及未来的温度预测,来量化在全球变暖 2°C 和 4°C 的情况下,世界主要玉米生产国和出口国的产量可变性将如何变化。我们发现,随着全球平均温度的升高,在温度变率不变或耐热性培育没有提高的情况下,玉米产量的变异系数(CV)几乎在所有地方都增加到比现在高得多的水平。这种更高的 CV 既归因于产量标准差的增加,也归因于平均产量的下降。对于占全球玉米出口 87%的前四个玉米出口国来说,它们在任何给定年份同时出现产量损失超过 10%的概率目前几乎为零,但在 2°C 升温下,这一概率增加到 7%,在 4°C 升温下,这一概率增加到 86%。我们的研究结果预示着全球粮食贸易和国际粮食价格将出现更大的不稳定性,这对约 8 亿生活在赤贫中的人影响尤其大,他们最容易受到粮食价格飙升的影响。它们还强调了耐热性培育投资的紧迫性。

相似文献

1
Future warming increases probability of globally synchronized maize production shocks.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6644-6649. doi: 10.1073/pnas.1718031115. Epub 2018 Jun 11.
2
The important but weakening maize yield benefit of grain filling prolongation in the US Midwest.
Glob Chang Biol. 2018 Oct;24(10):4718-4730. doi: 10.1111/gcb.14356. Epub 2018 Jul 3.
3
Ensemble yield simulations: Using heat-tolerant and later-maturing varieties to adapt to climate warming.
PLoS One. 2017 May 1;12(5):e0176766. doi: 10.1371/journal.pone.0176766. eCollection 2017.
4
How does climate change affect potential yields of four staple grain crops worldwide by 2030?
PLoS One. 2024 May 31;19(5):e0303857. doi: 10.1371/journal.pone.0303857. eCollection 2024.
5
Probabilistic evaluation of the impact of compound dry-hot events on global maize yields.
Sci Total Environ. 2019 Nov 1;689:1228-1234. doi: 10.1016/j.scitotenv.2019.06.373. Epub 2019 Jun 24.
6
The impact of 1.5 °C and 2.0 °C global warming on global maize production and trade.
Sci Rep. 2022 Oct 14;12(1):17268. doi: 10.1038/s41598-022-22228-7.
7
Climate Change and Maize Yield in Iowa.
PLoS One. 2016 May 24;11(5):e0156083. doi: 10.1371/journal.pone.0156083. eCollection 2016.
8
Responses of crop yield growth to global temperature and socioeconomic changes.
Sci Rep. 2017 Aug 10;7(1):7800. doi: 10.1038/s41598-017-08214-4.
9
Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale.
Sci Total Environ. 2020 Feb 20;704:135250. doi: 10.1016/j.scitotenv.2019.135250. Epub 2019 Nov 22.
10
Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming.
Environ Int. 2019 Jul;128:125-136. doi: 10.1016/j.envint.2019.04.025. Epub 2019 May 3.

引用本文的文献

2
Multiple climate-related stressors in the tropics and beneficial changes in northern latitudes will mostly have emerged before 2050.
PLoS One. 2025 Jun 17;20(6):e0293551. doi: 10.1371/journal.pone.0293551. eCollection 2025.
4
Global emergence of unprecedented lifetime exposure to climate extremes.
Nature. 2025 May;641(8062):374-379. doi: 10.1038/s41586-025-08907-1. Epub 2025 May 7.
5
HarvestStat Africa - Harmonized Subnational Crop Statistics for Sub-Saharan Africa.
Sci Data. 2025 Apr 24;12(1):690. doi: 10.1038/s41597-025-05001-z.
6
Assessing the capacity of agricultural research and development to increase the stability of global crop yields under climate change.
PNAS Nexus. 2025 Mar 22;4(4):pgaf099. doi: 10.1093/pnasnexus/pgaf099. eCollection 2025 Apr.
9
Conservation agriculture improves soil health and sustains crop yields after long-term warming.
Nat Commun. 2024 Oct 10;15(1):8785. doi: 10.1038/s41467-024-53169-6.
10
Phenotype identification and genome-wide association study of ear-internode vascular bundles in maize (Zea mays).
J Plant Res. 2024 Nov;137(6):1073-1090. doi: 10.1007/s10265-024-01565-w. Epub 2024 Aug 7.

本文引用的文献

1
Temperature increase reduces global yields of major crops in four independent estimates.
Proc Natl Acad Sci U S A. 2017 Aug 29;114(35):9326-9331. doi: 10.1073/pnas.1701762114. Epub 2017 Aug 15.
2
Climate variation explains a third of global crop yield variability.
Nat Commun. 2015 Jan 22;6:5989. doi: 10.1038/ncomms6989.
3
Temperatures and the growth and development of maize and rice: a review.
Glob Chang Biol. 2014 Feb;20(2):408-17. doi: 10.1111/gcb.12389. Epub 2013 Dec 19.
4
Yield Trends Are Insufficient to Double Global Crop Production by 2050.
PLoS One. 2013 Jun 19;8(6):e66428. doi: 10.1371/journal.pone.0066428. Print 2013.
5
Recent patterns of crop yield growth and stagnation.
Nat Commun. 2012;3:1293. doi: 10.1038/ncomms2296.
6
Response of corn markets to climate volatility under alternative energy futures.
Nat Clim Chang. 2012 Jul 1;2:514-518. doi: 10.1038/nclimate1491. Epub 2012 Apr 22.
7
Solutions for a cultivated planet.
Nature. 2011 Oct 12;478(7369):337-42. doi: 10.1038/nature10452.
8
Food security in an era of economic volatility.
Popul Dev Rev. 2010;36(4):693-723. doi: 10.1111/j.1728-4457.2010.00354.x.
9
Genetic engineering for modern agriculture: challenges and perspectives.
Annu Rev Plant Biol. 2010;61:443-62. doi: 10.1146/annurev-arplant-042809-112116.
10
Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15594-8. doi: 10.1073/pnas.0906865106. Epub 2009 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验