Suppr超能文献

AKI 向 CKD 模型的炎症和纤维化的不同影响。

Divergent effects of AKI to CKD models on inflammation and fibrosis.

机构信息

Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama.

Department of Biostatistics, University of Alabama at Birmingham , Birmingham, Alabama.

出版信息

Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F1107-F1118. doi: 10.1152/ajprenal.00179.2018. Epub 2018 Jun 13.

Abstract

Chronic kidney disease (CKD) is a condition with significant morbidity and mortality that affects 15% of adults in the United States. One cause of CKD is acute kidney injury (AKI), which commonly occurs secondary to sepsis, ischemic events, and drug-induced nephrotoxicity. Unilateral ischemia-reperfusion injury (UIRI) without contralateral nephrectomy (CLN) and repeated low-dose cisplatin (RLDC) models of AKI to CKD demonstrate responses characteristic of the transition; however, previous studies have not effectively compared the pathogenesis. We demonstrate both models instigate renal dysfunction, inflammatory cytokine responses, and fibrosis. However, the models exhibit differences in urinary excretory function, inflammatory cell infiltration, and degree of fibrotic response. UIRI without CLN demonstrated worsening perfusion and function, measured with Tc-mercaptoacetyltriglycine-3 imaging, and physiologic compensation in the contralateral kidney. Furthermore, UIRI without CLN elicited a robust inflammatory response that was characterized by a prolonged polymorphonuclear cell and natural killer cell infiltrate and an early expansion of kidney resident macrophages, followed by T-cell infiltration. Symmetrical diminished function occurred in RLDC kidneys and progressively worsened until day 17 of the study. Surprisingly, RLDC mice demonstrated a decrease in inflammatory cell numbers relative to controls. However, RLDC kidneys expressed increased levels of kidney injury molecule-1 (KIM-1), high mobility group box-1 ( HMGB1), and colony stimulating factor-1 ( CSF-1), which likely recruits inflammatory cells in response to injury. These data emphasize how the divergent etiologies of AKI to CKD models affect the kidney microenvironment and outcomes. This study provides support for subtyping AKI by etiology in human studies, aiding in the elucidation of injury-specific pathophysiologic mechanisms of the AKI to CKD transition.

摘要

慢性肾脏病(CKD)是一种发病率和死亡率都很高的疾病,在美国,15%的成年人患有这种疾病。CKD 的一个病因是急性肾损伤(AKI),它通常继发于脓毒症、缺血事件和药物引起的肾毒性。单侧缺血再灌注损伤(UIRI)无对侧肾切除术(CLN)和反复低剂量顺铂(RLDC)AKI 至 CKD 模型显示出与过渡相关的特征反应;然而,以前的研究并没有有效地比较发病机制。我们证明这两种模型都会引发肾功能障碍、炎症细胞因子反应和纤维化。然而,这两种模型在尿排泄功能、炎症细胞浸润和纤维化反应程度上存在差异。UIRI 无 CLN 表现出灌注和功能恶化,用 Tc-巯基乙酰三甘氨酸-3 成像测量,并在对侧肾脏中出现生理代偿。此外,UIRI 无 CLN 引发了强烈的炎症反应,其特征是多形核细胞和自然杀伤细胞浸润的持续时间延长,以及肾脏固有巨噬细胞的早期扩张,随后是 T 细胞浸润。RLDC 肾脏出现对称性功能减退,且逐渐恶化,直到研究的第 17 天。令人惊讶的是,RLDC 小鼠的炎症细胞数量相对对照减少。然而,RLDC 肾脏表达的肾损伤分子-1(KIM-1)、高迁移率族蛋白 B1(HMGB1)和集落刺激因子-1(CSF-1)水平增加,这可能是为了应对损伤而招募炎症细胞。这些数据强调了 AKI 至 CKD 模型的不同病因如何影响肾脏微环境和结局。本研究为人类研究中根据病因对 AKI 进行亚型分类提供了支持,有助于阐明 AKI 至 CKD 过渡的特定损伤病理生理机制。

相似文献

1
Divergent effects of AKI to CKD models on inflammation and fibrosis.
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F1107-F1118. doi: 10.1152/ajprenal.00179.2018. Epub 2018 Jun 13.
3
Rodent models of AKI-CKD transition.
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F1098-F1106. doi: 10.1152/ajprenal.00199.2018. Epub 2018 Jun 27.
4
Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis.
Am J Physiol Renal Physiol. 2019 Nov 1;317(5):F1383-F1397. doi: 10.1152/ajprenal.00366.2019. Epub 2019 Sep 11.
5
A two-stage bilateral ischemia-reperfusion injury-induced AKI to CKD transition model in mice.
Am J Physiol Renal Physiol. 2020 Aug 1;319(2):F304-F311. doi: 10.1152/ajprenal.00017.2020. Epub 2020 Jun 22.
6
IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats.
Am J Physiol Renal Physiol. 2017 Mar 1;312(3):F385-F397. doi: 10.1152/ajprenal.00462.2016. Epub 2016 Nov 16.
7
New mouse model of chronic kidney disease transitioned from ischemic acute kidney injury.
Am J Physiol Renal Physiol. 2019 Aug 1;317(2):F286-F295. doi: 10.1152/ajprenal.00021.2019. Epub 2019 May 22.
8
Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice.
PLoS One. 2016 Mar 23;11(3):e0152153. doi: 10.1371/journal.pone.0152153. eCollection 2016.
9
Renal ischemia-reperfusion injury causes hypertension and renal perfusion impairment in the CD1 mice which promotes progressive renal fibrosis.
Am J Physiol Renal Physiol. 2018 May 1;314(5):F881-F892. doi: 10.1152/ajprenal.00519.2016. Epub 2017 Dec 20.
10
Role of protease-activated receptor 4 in mouse models of acute and chronic kidney injury.
Am J Physiol Renal Physiol. 2024 Feb 1;326(2):F219-F226. doi: 10.1152/ajprenal.00162.2023. Epub 2023 Nov 30.

引用本文的文献

1
3
Podocyte cell-specific is required for blood pressure and renal homeostasis in male and female mice: role of sex-specific differences.
Physiol Genomics. 2024 Oct 1;56(10):672-690. doi: 10.1152/physiolgenomics.00137.2023. Epub 2024 Aug 5.
4
TRPC6 Knockout Alleviates Renal Fibrosis through PI3K/AKT/GSK3B Pathway.
Curr Med Sci. 2024 Jun;44(3):589-602. doi: 10.1007/s11596-024-2869-z. Epub 2024 May 15.
5
Expanding landscape of coronary microvascular disease in co-morbid conditions: Metabolic disease and beyond.
J Mol Cell Cardiol. 2024 Jul;192:26-35. doi: 10.1016/j.yjmcc.2024.05.004. Epub 2024 May 10.
6
Rodent models of AKI and AKI-CKD transition: an update in 2024.
Am J Physiol Renal Physiol. 2024 Apr 1;326(4):F563-F583. doi: 10.1152/ajprenal.00402.2023. Epub 2024 Feb 1.
8
Reciprocal regulation between the molecular clock and kidney injury.
Life Sci Alliance. 2023 Jul 24;6(10). doi: 10.26508/lsa.202201886. Print 2023 Oct.
9
The macrocyclic lactone oxacyclododecindione reduces fibrosis progression.
Front Pharmacol. 2023 Jun 13;14:1200164. doi: 10.3389/fphar.2023.1200164. eCollection 2023.
10
The STAT1/HMGB1/NF-κB pathway in chronic inflammation and kidney injury after cisplatin exposure.
Theranostics. 2023 May 8;13(9):2757-2773. doi: 10.7150/thno.81406. eCollection 2023.

本文引用的文献

1
Renal fibrosis: Primacy of the proximal tubule.
Matrix Biol. 2018 Aug;68-69:248-262. doi: 10.1016/j.matbio.2018.02.006. Epub 2018 Feb 6.
2
Subclinical kidney injury induced by repeated cisplatin administration results in progressive chronic kidney disease.
Am J Physiol Renal Physiol. 2018 Jul 1;315(1):F161-F172. doi: 10.1152/ajprenal.00636.2017. Epub 2018 Jan 31.
3
Parabiosis reveals leukocyte dynamics in the kidney.
Lab Invest. 2018 Mar;98(3):391-402. doi: 10.1038/labinvest.2017.130. Epub 2017 Dec 18.
4
Mechanisms of Renal Fibrosis.
Annu Rev Physiol. 2018 Feb 10;80:309-326. doi: 10.1146/annurev-physiol-022516-034227. Epub 2017 Oct 25.
6
Cardiac surgery-associated acute kidney injury: risk factors, pathophysiology and treatment.
Nat Rev Nephrol. 2017 Nov;13(11):697-711. doi: 10.1038/nrneph.2017.119. Epub 2017 Sep 4.
7
Unique sex- and age-dependent effects in protective pathways in acute kidney injury.
Am J Physiol Renal Physiol. 2017 Sep 1;313(3):F740-F755. doi: 10.1152/ajprenal.00049.2017. Epub 2017 Jul 5.
9
Platinum-containing regimens for metastatic breast cancer.
Cochrane Database Syst Rev. 2017 Jun 23;6(6):CD003374. doi: 10.1002/14651858.CD003374.pub4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验