Suppr超能文献

疫苗学优先事项的转变:抗生素耐药性成为首要问题。

Changing Priorities in Vaccinology: Antibiotic Resistance Moving to the Top.

机构信息

Institute for Genetic and Biomedical Research, CNR, Cagliari, Italy.

GSK Vaccines, Siena, Italy.

出版信息

Front Immunol. 2018 May 30;9:1068. doi: 10.3389/fimmu.2018.01068. eCollection 2018.

Abstract

Antimicrobial resistance (AMR) is currently the most alarming issue for human health. AMR already causes 700,000 deaths/year. It is estimated that 10 million deaths due to AMR will occur every year after 2050. This equals the number of people dying of cancer every year in present times. International institutions such as G20, World Bank, World Health Organization (WHO), UN General Assembly, European Union, and the UK and USA governments are calling for new antibiotics. To underline this emergency, a list of antibiotic-resistant "priority pathogens" has been published by WHO. It contains 12 families of bacteria that represent the greatest danger for human health. Resistance to multiple antibiotics is particularly relevant for the Gram-negative bacteria present in the list. The ability of these bacteria to develop mechanisms to resist treatment could be transmitted with genetic material, allowing other bacteria to become drug resistant. Although the search for new antimicrobial drugs remains a top priority, the pipeline for new antibiotics is not promising, and alternative solutions are needed. A possible answer to AMR is vaccination. In fact, while antibiotic resistance emerges rapidly, vaccines can lead to a much longer lasting control of infections. New technologies, such as the high-throughput cloning of human B cells from convalescent or vaccinated people, allow for finding new protective antigens (Ags) that could not be identified with conventional technologies. Antibodies produced by convalescent B cell clones can be screened for their ability to bind, block, and kill bacteria, using novel high-throughput microscopy platforms that rapidly capture digital images, or by conventional technologies such as bactericidal, opsono-phagocytosis and FACS assays. Selected antibodies expressed by recombinant DNA techniques can be used for passive immunization in animal models and tested for protection. Antibodies providing the best protection can be employed to identify new Ags and then used for generating highly specific recombinant Fab fragments. Co-crystallization of Ags bound to Fab fragments will allow us to determine the structure and characteristics of new Ags. This structure-based Ag design will bring to a new generation of vaccines able to target previously elusive infections, thereby offering an effective solution to the problem of AMR.

摘要

抗菌药物耐药性(AMR)目前是人类健康面临的最严重问题。AMR 每年导致 70 万人死亡。据估计,2050 年后每年将有 1000 万人因 AMR 而死亡。这相当于目前每年死于癌症的人数。二十国集团(G20)、世界银行、世界卫生组织(WHO)、联合国大会、欧盟以及英国和美国政府等国际机构都在呼吁开发新的抗生素。为了强调这一紧急情况,世卫组织公布了一份抗药性“优先病原体”清单,其中包含对人类健康构成最大威胁的 12 种细菌家族。该清单中的革兰氏阴性细菌对多种抗生素具有抗药性。这些细菌产生抗药性的能力可以通过遗传物质传播,使其他细菌也具有抗药性。虽然寻找新的抗菌药物仍然是当务之急,但新抗生素的研发前景并不乐观,因此需要寻找替代方案。对抗 AMR 的一个可能方法是接种疫苗。事实上,虽然抗生素耐药性迅速出现,但疫苗可以更持久地控制感染。新的技术,如从康复或接种疫苗的人身上高通量克隆人 B 细胞,可以发现用传统技术无法识别的新保护性抗原(Ags)。可以通过新型高通量显微镜平台快速捕获数字图像,或通过杀菌、调理吞噬和 FACS 测定等传统技术,筛选出从恢复期 B 细胞克隆中产生的抗体,以检测其结合、阻断和杀死细菌的能力。通过重组 DNA 技术表达的选定抗体可用于在动物模型中进行被动免疫,并进行保护测试。具有最佳保护作用的抗体可用于鉴定新的 Ags,然后用于生成高度特异性的重组 Fab 片段。将与 Fab 片段结合的 Ags 进行共结晶,将使我们能够确定新 Ags 的结构和特性。这种基于结构的 Ag 设计将带来新一代能够靶向以前难以捉摸的感染的疫苗,从而为 AMR 问题提供有效的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca8/5992407/6f599dcbad8c/fimmu-09-01068-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验