Suppr超能文献

-miR399 调控模块对玉米耐低磷至关重要。

The -miR399 Regulatory Module Is Important for Low Phosphate Tolerance in Maize.

机构信息

Institute of Crop Science, National Engineering Laboratory for Crop Molecular Breeding, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Institute of Crop Science, National Engineering Laboratory for Crop Molecular Breeding, Chinese Academy of Agricultural Sciences, Beijing 100081, China

出版信息

Plant Physiol. 2018 Aug;177(4):1743-1753. doi: 10.1104/pp.18.00034. Epub 2018 Jul 2.

Abstract

The regulation of adaptive responses to phosphorus (P) deficiency by the ()/ () pathway has been well studied in Arabidopsis () but not in maize (). Here, we show that miR399 transcripts are strongly induced in maize by phosphate (Pi) deficiency. Transgenic maize plants that overexpressed accumulated excessive amounts of P in their shoots and displayed typical Pi-toxicity phenotypes. We reannotated with an additional 1,165 bp of the 5' untranslated region. miR399-guided posttranscriptional repression of was mainly observed in the P-efficient lines. We identified Pi-deficiency-induced long-noncoding RNA1 () from our strand-specific RNA libraries. Transient expression assays in and maize leaf protoplasts demonstrated that inhibits ZmmiR399-guided cleavage of The abundance of was significantly higher in P-inefficient lines than in P-efficient lines, which is consistent with the abundance of ZmmiR399 transcripts. These results indicate that the interaction between and miR399 is important for tolerance to low Pi in maize.

摘要

磷(P)缺乏诱导的适应性反应的调控途径在拟南芥中研究得很好,但在玉米中却没有。在这里,我们表明,在玉米中,miR399 转录本在磷酸盐(Pi)缺乏时强烈诱导。过量表达的转基因玉米植株在其地上部分积累了过量的 P,并表现出典型的 Pi 毒性表型。我们用额外的 5'非翻译区的 1,165 bp 重新注释。miR399 引导的在 P 高效株系中主要观察到对的转录后抑制。我们从我们的链特异性 RNA 文库中鉴定了 Pi 缺乏诱导的长非编码 RNA1()。在和玉米叶原生质体中的瞬时表达实验表明,抑制 ZmmiR399 对的切割。在 P 低效系中的含量明显高于 P 高效系,这与 ZmmiR399 转录本的含量一致。这些结果表明,和 miR399 之间的相互作用对玉米耐受低 Pi 非常重要。

相似文献

1
The -miR399 Regulatory Module Is Important for Low Phosphate Tolerance in Maize.
Plant Physiol. 2018 Aug;177(4):1743-1753. doi: 10.1104/pp.18.00034. Epub 2018 Jul 2.
3
The long non-coding RNA PILNCR2 increases low phosphate tolerance in maize by interfering with miRNA399-guided cleavage of ZmPHT1s.
Mol Plant. 2023 Jul 3;16(7):1146-1159. doi: 10.1016/j.molp.2023.05.009. Epub 2023 Jun 1.
4
Regulatory network of microRNA399 and PHO2 by systemic signaling.
Plant Physiol. 2008 Jun;147(2):732-46. doi: 10.1104/pp.108.116269. Epub 2008 Apr 4.
5
pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene.
Plant Physiol. 2006 Jul;141(3):1000-11. doi: 10.1104/pp.106.078063. Epub 2006 May 5.
6
PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants.
Plant Physiol. 2006 Jul;141(3):988-99. doi: 10.1104/pp.106.079707. Epub 2006 May 5.
7
A microRNA528-ZmLac3 module regulates low phosphate tolerance in maize.
Plant J. 2024 Jun;118(6):2233-2248. doi: 10.1111/tpj.16741. Epub 2024 Apr 3.
8
Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress.
Plant Physiol Biochem. 2016 Dec;109:467-481. doi: 10.1016/j.plaphy.2016.10.017. Epub 2016 Oct 22.
10
Identification of transcription factors that bind to the 5'-UTR of the barley PHO2 gene.
Plant Mol Biol. 2020 Jan;102(1-2):73-88. doi: 10.1007/s11103-019-00932-9. Epub 2019 Nov 19.

引用本文的文献

2
LncRNAOmics: A Comprehensive Review of Long Non-Coding RNAs in Plants.
Genes (Basel). 2025 Jun 29;16(7):765. doi: 10.3390/genes16070765.
5
From genes to traits: maximizing phosphorus utilization efficiency in crop plants.
Front Plant Sci. 2025 Apr 8;16:1527547. doi: 10.3389/fpls.2025.1527547. eCollection 2025.
6
7
Beyond the genome: unveiling tissue-specific non-coding RNAs in clove ().
3 Biotech. 2025 Apr;15(4):81. doi: 10.1007/s13205-025-04251-3. Epub 2025 Mar 9.
8
The long non-coding RNA MSTRG.32189-PcmiR399b- module regulates phosphate accumulation and disease resistance to in pear.
Hortic Res. 2025 Jan 3;12(4):uhae359. doi: 10.1093/hr/uhae359. eCollection 2025 Apr.
9
MicroRNA gatekeepers: Orchestrating rhizospheric dynamics.
J Integr Plant Biol. 2025 Mar;67(3):845-876. doi: 10.1111/jipb.13860. Epub 2025 Feb 21.
10
Epigenetics in the modern era of crop improvements.
Sci China Life Sci. 2025 Jan 8. doi: 10.1007/s11427-024-2784-3.

本文引用的文献

1
FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome.
Nucleic Acids Res. 2017 May 5;45(8):e57. doi: 10.1093/nar/gkw1306.
3
4
Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown.
Nat Protoc. 2016 Sep;11(9):1650-67. doi: 10.1038/nprot.2016.095. Epub 2016 Aug 11.
5
ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters.
J Exp Bot. 2016 Mar;67(5):1327-38. doi: 10.1093/jxb/erv527. Epub 2015 Dec 20.
7
Long non-coding RNAs and their functions in plants.
Curr Opin Plant Biol. 2015 Oct;27:207-16. doi: 10.1016/j.pbi.2015.08.003. Epub 2015 Sep 3.
8
Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.).
New Phytol. 2015 Sep;207(4):1181-97. doi: 10.1111/nph.13429. Epub 2015 Apr 28.
9
HISAT: a fast spliced aligner with low memory requirements.
Nat Methods. 2015 Apr;12(4):357-60. doi: 10.1038/nmeth.3317. Epub 2015 Mar 9.
10
StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
Nat Biotechnol. 2015 Mar;33(3):290-5. doi: 10.1038/nbt.3122. Epub 2015 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验