Suppr超能文献

锰与 Rubisco 的结合可能会驱动一个光呼吸途径,从而提高光合作用的能量效率。

Manganese binding to Rubisco could drive a photorespiratory pathway that increases the energy efficiency of photosynthesis.

机构信息

Department of Plant Sciences, University of California at Davis, Davis, CA, USA.

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.

出版信息

Nat Plants. 2018 Jul;4(7):414-422. doi: 10.1038/s41477-018-0191-0. Epub 2018 Jul 2.

Abstract

Most plants, contrary to popular belief, do not waste over 30% of their photosynthate in a futile cycle called photorespiration. Rather, the photorespiratory pathway generates additional malate in the chloroplast that empowers many energy-intensive chemical reactions, such as those involved in nitrate assimilation. Thus, the balance between carbon fixation and photorespiration determines the plant carbon-nitrogen balance and protein concentrations. Plant protein concentrations, in turn, depend not only on the relative concentrations of carbon dioxide and oxygen in the chloroplast but also on the relative activities of magnesium and manganese, which are metals that associate with several key enzymes in the photorespiratory pathway and alter their function. Understanding the regulation of these processes is critical for sustaining food quality under rising CO atmospheres.

摘要

与普遍观点相反,大多数植物并非将其光合作用产物的 30%以上浪费在一种称为光呼吸的无效循环中。相反,光呼吸途径在叶绿体中产生额外的苹果酸,从而为许多能量密集型化学反应提供动力,例如参与硝酸盐同化的反应。因此,碳固定和光呼吸之间的平衡决定了植物的碳氮平衡和蛋白质浓度。反过来,植物蛋白质浓度不仅取决于叶绿体中二氧化碳和氧气的相对浓度,还取决于镁和锰的相对活性,这两种金属与光呼吸途径中的几个关键酶结合并改变其功能。了解这些过程的调控对于在不断升高的 CO 环境下维持食物质量至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验