Suppr超能文献

定制功能肽自组装纳米结构。

Tailor-Made Functional Peptide Self-Assembling Nanostructures.

机构信息

Department of Materials Engineering, Ben Gurion University of the Negev, Beer-Sheva, 84105, Israel.

Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA, 92093-0407, USA.

出版信息

Adv Mater. 2018 Oct;30(41):e1707083. doi: 10.1002/adma.201707083. Epub 2018 Jul 10.

Abstract

Noncovalent interactions are the main driving force in the folding of proteins into a 3D functional structure. Motivated by the wish to reveal the mechanisms of the associated self-assembly processes, scientists are focusing on studying self-assembly processes of short protein segments (peptides). While this research has led to major advances in the understanding of biological and pathological process, only in recent years has the applicative potential of the resulting self-assembled peptide assemblies started to be explored. Here, major advances in the development of biomimetic supramolecular peptide assemblies as coatings, gels, and as electroactive materials, are highlighted. The guiding lines for the design of helical peptides, β strand peptides, as well as surface binding monolayer-forming peptides that can be utilized for a specific function are highlighted. Examples of their applications in diverse immerging applications in, e.g., ecology, biomedicine, and electronics, are described. Taking into account that, in addition to extraordinary design flexibility, these materials are naturally biocompatible and ecologically friendly, and their production is cost effective, the emergence of devices incorporating these biomimetic materials in the market is envisioned in the near future.

摘要

非共价相互作用是蛋白质折叠成 3D 功能结构的主要驱动力。受揭示相关自组装过程机制的愿望的驱使,科学家们专注于研究短蛋白片段(肽)的自组装过程。虽然这项研究极大地促进了对生物和病理过程的理解,但直到最近,由此产生的自组装肽组装的应用潜力才开始被探索。在这里,重点介绍了作为涂层、凝胶和作为电活性材料的仿生超分子肽组装的主要进展。强调了设计螺旋肽、β 折叠肽以及可用于特定功能的表面结合单层形成肽的指导原则。描述了它们在生态学、生物医学和电子学等各种新兴应用中的应用实例。考虑到这些材料除了具有非凡的设计灵活性外,还具有天然的生物相容性和环境友好性,并且其生产成本效益高,预计在不久的将来,市场上将会出现包含这些仿生材料的设备。

相似文献

1
Tailor-Made Functional Peptide Self-Assembling Nanostructures.
Adv Mater. 2018 Oct;30(41):e1707083. doi: 10.1002/adma.201707083. Epub 2018 Jul 10.
2
Self-Assembling Peptide-Based Functional Biomaterials.
Chembiochem. 2023 Jan 17;24(2):e202200582. doi: 10.1002/cbic.202200582. Epub 2022 Nov 30.
3
Self-assembling peptide-based building blocks in medical applications.
Adv Drug Deliv Rev. 2017 Feb;110-111:65-79. doi: 10.1016/j.addr.2016.08.006. Epub 2016 Aug 14.
5
Noncanonical Amino Acids Dictate Peptide Assembly in Living Cells.
Acc Chem Res. 2025 Apr 1;58(7):1081-1093. doi: 10.1021/acs.accounts.4c00796. Epub 2025 Mar 19.
6
Self-assembly of Functional Nanostructures by Short Helical Peptide Building Blocks.
Protein Pept Lett. 2019;26(2):88-97. doi: 10.2174/0929866525666180917163142.
7
From short peptides to nanofibers to macromolecular assemblies in biomedicine.
Biotechnol Adv. 2012 May-Jun;30(3):593-603. doi: 10.1016/j.biotechadv.2011.10.004. Epub 2011 Oct 20.
8
Stimuli-responsive peptide hydrogels for biomedical applications.
J Mater Chem B. 2024 Feb 14;12(7):1748-1774. doi: 10.1039/d3tb02610h.
9
Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
Acta Biomater. 2018 Jan 15;66:258-271. doi: 10.1016/j.actbio.2017.11.026. Epub 2017 Nov 8.
10
Molecular self-assembly and applications of designer peptide amphiphiles.
Chem Soc Rev. 2010 Sep;39(9):3480-98. doi: 10.1039/b915923c. Epub 2010 May 24.

引用本文的文献

2
Spontaneous Formation of a Sustainable Antifreeze Coating by Peptide Self-Assembly.
ACS Appl Mater Interfaces. 2025 Mar 12;17(10):16256-16267. doi: 10.1021/acsami.4c22816. Epub 2025 Mar 2.
3
Injectable pH-responsive polypeptide hydrogels for local delivery of doxorubicin.
Nanoscale Adv. 2024 Oct 26;6(24):6420-32. doi: 10.1039/d4na00719k.
5
7
Light-Fueled Primitive Replication and Selection in Biomimetic Chemical Systems.
J Am Chem Soc. 2023 Jun 21;145(24):13371-13383. doi: 10.1021/jacs.3c03597. Epub 2023 Jun 7.
8
Self-assembly of benzophenone-diphenylalanine conjugate into a nanostructured photocatalyst.
Chem Commun (Camb). 2023 Jun 15;59(49):7619-7622. doi: 10.1039/d3cc01673k.
9
The Action of Chemical Denaturants: From Globular to Intrinsically Disordered Proteins.
Biology (Basel). 2023 May 22;12(5):754. doi: 10.3390/biology12050754.

本文引用的文献

1
Peptide-Based Supramolecular Semiconductor Nanomaterials via Pd-Catalyzed Solid-Phase "Dimerizations".
ACS Macro Lett. 2012 Nov 20;1(11):1326-1329. doi: 10.1021/mz3004665. Epub 2012 Oct 30.
2
Zwitterionic SAMs that Resist Nonspecific Adsorption of Protein from Aqueous Buffer.
Langmuir. 2001 May 1;17(9):2841-2850. doi: 10.1021/la0015258.
3
Co-assembly of aromatic dipeptides into spherical structures that are similar in morphology to red and white blood cells.
J Mater Chem B. 2014 May 7;2(17):2583-2591. doi: 10.1039/c3tb21456g. Epub 2014 Feb 4.
4
Solid-Phase Synthesis of Self-Assembling Multivalent π-Conjugated Peptides.
ACS Omega. 2017 Feb 7;2(2):409-419. doi: 10.1021/acsomega.6b00414. eCollection 2017 Feb 28.
5
Integrating proteomics with electrochemistry for identifying kinase biomarkers.
Chem Sci. 2015 Aug 1;6(8):4756-4766. doi: 10.1039/c5sc00560d. Epub 2015 May 22.
6
Supramolecular Assembly of Peptide Amphiphiles.
Acc Chem Res. 2017 Oct 17;50(10):2440-2448. doi: 10.1021/acs.accounts.7b00297. Epub 2017 Sep 6.
7
Tailorable Exciton Transport in Doped Peptide-Amphiphile Assemblies.
ACS Nano. 2017 Sep 26;11(9):9112-9118. doi: 10.1021/acsnano.7b03867. Epub 2017 Aug 29.
8
Implications of peptide assemblies in amyloid diseases.
Chem Soc Rev. 2017 Oct 30;46(21):6492-6531. doi: 10.1039/c7cs00372b.
9
Fabrication of Supramolecular n/p-Nanowires via Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media.
ACS Nano. 2017 Jul 25;11(7):6881-6892. doi: 10.1021/acsnano.7b02025. Epub 2017 Jul 11.
10
Kinetically Controlled Coassembly of Multichromophoric Peptide Hydrogelators and the Impacts on Energy Transport.
J Am Chem Soc. 2017 Jun 28;139(25):8685-8692. doi: 10.1021/jacs.7b04006. Epub 2017 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验