Suppr超能文献

DIA-SIFT:用于准确的稳定同位素数据非依赖采集蛋白质组学的前体和产物离子过滤。

DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics.

机构信息

Department of Chemistry , University of Michigan , 930 N. University Avenue, Ann Arbor , Michigan 48109 , United States.

出版信息

Anal Chem. 2018 Aug 7;90(15):8722-8726. doi: 10.1021/acs.analchem.8b01618. Epub 2018 Jul 19.

Abstract

Quantitative mass spectrometry-based protein profiling is widely used to measure protein levels across different treatments or disease states, yet current mass spectrometry acquisition methods present distinct limitations. While data-independent acquisition (DIA) bypasses the stochastic nature of data-dependent acquisition (DDA), fragment spectra derived from DIA are often complex and challenging to deconvolve. In-line ion mobility separation (IMS) adds an additional dimension to increase peak capacity for more efficient product ion assignment. As a similar strategy to sequential window acquisition methods (SWATH), IMS-enabled DIA methods rival DDA methods for protein annotation. Here we evaluate IMS-DIA quantitative accuracy using stable isotope labeling by amino acids in cell culture (SILAC). Since SILAC analysis doubles the sample complexity, we find that IMS-DIA analysis is not sufficiently accurate for sensitive quantitation. However, SILAC precursor pairs share common retention and drift times, and both species cofragment to yield multiple quantifiable isotopic y-ion peak pairs. Since y-ion SILAC ratios are intrinsic for each quantified precursor, combined MS1 and y-ion ratio analysis significantly increases the total number of measurements. With increased sampling, we present DIA-SIFT ( SILAC Intrinsic Filtering Tool), a simple statistical algorithm to identify and eliminate poorly quantified MS1 and/or MS2 events. DIA-SIFT combines both MS1 and y-ion ratios, removes outliers, and provides more accurate and precise quantitation (<15% CV) without removing any proteins from the final analysis. Overall, pooled MS1 and MS2 quantitation increases sampling in IMS-DIA SILAC analyses for accurate and precise quantitation.

摘要

基于定量质谱的蛋白质谱分析广泛用于测量不同处理或疾病状态下的蛋白质水平,但目前的质谱采集方法存在明显的局限性。虽然数据非依赖性采集 (DIA) 绕过了数据依赖性采集 (DDA) 的随机性,但 DIA 衍生的片段谱通常很复杂,难以解卷积。在线离子淌度分离 (IMS) 增加了一个额外的维度,以提高峰容量,从而更有效地分配产物离子。作为类似顺序窗口采集方法 (SWATH) 的策略,IMS 增强的 DIA 方法在蛋白质注释方面可与 DDA 方法相媲美。在这里,我们使用稳定同位素标记的细胞培养物中的氨基酸 (SILAC) 来评估 IMS-DIA 的定量准确性。由于 SILAC 分析使样品复杂度增加了一倍,我们发现 IMS-DIA 分析对于敏感定量来说不够准确。然而,SILAC 前体对具有共同的保留和漂移时间,并且两种物质都共同碎裂以产生多个可定量的同位素 y-离子峰对。由于 y-离子 SILAC 比对于每个定量的前体都是内在的,因此结合 MS1 和 y-离子比分析显著增加了总测量数。通过增加采样,我们提出了 DIA-SIFT(SILAC 固有过滤工具),这是一种简单的统计算法,用于识别和消除定量不佳的 MS1 和/或 MS2 事件。DIA-SIFT 结合了 MS1 和 y-离子比,消除了离群值,并提供了更准确和精确的定量(<15%CV),而不会从最终分析中删除任何蛋白质。总的来说,在 IMS-DIA SILAC 分析中合并 MS1 和 MS2 定量可增加采样,以实现准确和精确的定量。

相似文献

1
DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics.
Anal Chem. 2018 Aug 7;90(15):8722-8726. doi: 10.1021/acs.analchem.8b01618. Epub 2018 Jul 19.
2
Software for quantitative proteomic analysis using stable isotope labeling and data independent acquisition.
Anal Chem. 2011 Sep 15;83(18):6971-9. doi: 10.1021/ac201555m. Epub 2011 Aug 23.
3
Using SILAC to Develop Quantitative Data-Independent Acquisition (DIA) Proteomic Methods.
Methods Mol Biol. 2023;2603:245-257. doi: 10.1007/978-1-0716-2863-8_20.
5
Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics.
Nat Protoc. 2016 Apr;11(4):795-812. doi: 10.1038/nprot.2016.042. Epub 2016 Mar 24.
6
Proteomic Profiling of Cell Death: Stable Isotope Labeling and Mass Spectrometry Analysis.
Methods Mol Biol. 2016;1419:277-86. doi: 10.1007/978-1-4939-3581-9_20.
7
Multiplexed quantification for data-independent acquisition.
Anal Chem. 2015 Mar 3;87(5):2570-5. doi: 10.1021/ac503593d. Epub 2015 Feb 11.
8
Coisolation of Peptide Pairs for Peptide Identification and MS/MS-Based Quantification.
Anal Chem. 2022 Nov 8;94(44):15198-15206. doi: 10.1021/acs.analchem.2c01711. Epub 2022 Oct 28.
9
MdFDIA: A Mass Defect Based Four-Plex Data-Independent Acquisition Strategy for Proteome Quantification.
Anal Chem. 2017 Oct 3;89(19):10248-10255. doi: 10.1021/acs.analchem.7b01635. Epub 2017 Sep 19.
10
Improved SILAC Quantification with Data-Independent Acquisition to Investigate Bortezomib-Induced Protein Degradation.
J Proteome Res. 2021 Apr 2;20(4):1918-1927. doi: 10.1021/acs.jproteome.0c00938. Epub 2021 Mar 25.

引用本文的文献

1
Benchmarking SILAC Proteomics Workflows and Data Analysis Platforms.
Mol Cell Proteomics. 2025 Apr 30;24(6):100980. doi: 10.1016/j.mcpro.2025.100980.
2
Instrumentation at the Leading Edge of Proteomics.
Anal Chem. 2024 May 21;96(20):7976-8010. doi: 10.1021/acs.analchem.3c04497. Epub 2024 May 13.
3
Strategies for Increasing the Depth and Throughput of Protein Analysis by plexDIA.
J Proteome Res. 2023 Mar 3;22(3):697-705. doi: 10.1021/acs.jproteome.2c00721. Epub 2023 Feb 3.
4
Coisolation of Peptide Pairs for Peptide Identification and MS/MS-Based Quantification.
Anal Chem. 2022 Nov 8;94(44):15198-15206. doi: 10.1021/acs.analchem.2c01711. Epub 2022 Oct 28.
5
Increasing the throughput of sensitive proteomics by plexDIA.
Nat Biotechnol. 2023 Jan;41(1):50-59. doi: 10.1038/s41587-022-01389-w. Epub 2022 Jul 14.
6
Improved SILAC Quantification with Data-Independent Acquisition to Investigate Bortezomib-Induced Protein Degradation.
J Proteome Res. 2021 Apr 2;20(4):1918-1927. doi: 10.1021/acs.jproteome.0c00938. Epub 2021 Mar 25.

本文引用的文献

1
Benchmarking common quantification strategies for large-scale phosphoproteomics.
Nat Commun. 2018 Mar 13;9(1):1045. doi: 10.1038/s41467-018-03309-6.
3
Variable-Velocity Traveling-Wave Ion Mobility Separation Enhancing Peak Capacity for Data-Independent Acquisition Proteomics.
Anal Chem. 2017 Jun 6;89(11):5669-5672. doi: 10.1021/acs.analchem.7b00112. Epub 2017 May 9.
4
Galectin-1 inhibition attenuates profibrotic signaling in hypoxia-induced pulmonary fibrosis.
Cell Death Discov. 2017 Apr 10;3:17010. doi: 10.1038/cddiscovery.2017.10. eCollection 2017.
5
Now, More Than Ever, Proteomics Needs Better Chromatography.
Cell Syst. 2016 Oct 26;3(4):321-324. doi: 10.1016/j.cels.2016.10.007.
6
Application of de Novo Sequencing to Large-Scale Complex Proteomics Data Sets.
J Proteome Res. 2016 Mar 4;15(3):732-42. doi: 10.1021/acs.jproteome.5b00861. Epub 2016 Jan 25.
7
Protein turnover during in vitro tissue engineering.
Biomaterials. 2016 Mar;81:104-113. doi: 10.1016/j.biomaterials.2015.12.004. Epub 2015 Dec 14.
8
Multiplexed quantification for data-independent acquisition.
Anal Chem. 2015 Mar 3;87(5):2570-5. doi: 10.1021/ac503593d. Epub 2015 Feb 11.
10
Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics.
Nat Methods. 2014 Feb;11(2):167-70. doi: 10.1038/nmeth.2767. Epub 2013 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验