Suppr超能文献

利用同态加密和差分隐私技术在 i2b2 中保护基因组数据的隐私和安全。

Protecting Privacy and Security of Genomic Data in i2b2 with Homomorphic Encryption and Differential Privacy.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2018 Sep-Oct;15(5):1413-1426. doi: 10.1109/TCBB.2018.2854782. Epub 2018 Jul 10.

Abstract

Re-use of patients' health records can provide tremendous benefits for clinical research. Yet, when researchers need to access sensitive/identifying data, such as genomic data, in order to compile cohorts of well-characterized patients for specific studies, privacy and security concerns represent major obstacles that make such a procedure extremely difficult if not impossible. In this paper, we address the challenge of designing and deploying in a real operational setting an efficient privacy-preserving explorer for genetic cohorts. Our solution is built on top of the i2b2 (Informatics for Integrating Biology and the Bedside) framework and leverages cutting-edge privacy-enhancing technologies such as homomorphic encryption and differential privacy. Solutions involving homomorphic encryption are often believed to be costly and immature for use in operational environments. Here, we show that, for specific applications, homomorphic encryption is actually a very efficient enabler. Indeed, our solution outperforms prior work by enabling a researcher to securely compute simple statistics on more than 3,000 encrypted genetic variants simultaneously for a cohort of 5,000 individuals in less than 5 seconds with commodity hardware. To the best of our knowledge, our privacy-preserving solution is the first to also be successfully deployed and tested in a operation setting (Lausanne University Hospital).

摘要

患者健康记录的再利用可为临床研究带来巨大的益处。然而,当研究人员需要访问敏感/识别数据(如基因组数据),以便为特定研究编制特征明确的患者队列时,隐私和安全问题成为主要障碍,使得此类程序变得极其困难,如果不是不可能的话。在本文中,我们将解决在实际操作环境中设计和部署高效隐私保护遗传队列探索器的挑战。我们的解决方案建立在 i2b2(将生物学和床边信息学集成)框架之上,并利用同态加密和差分隐私等最先进的隐私增强技术。涉及同态加密的解决方案通常被认为在操作环境中使用成本高且不成熟。在这里,我们表明,对于特定应用程序,同态加密实际上是一种非常有效的实现方式。实际上,我们的解决方案通过使研究人员能够在不到 5 秒的时间内使用商品硬件安全地同时对 5000 名个体的队列中的 3000 多个加密遗传变体进行简单统计计算,从而超越了先前的工作。据我们所知,我们的隐私保护解决方案也是第一个成功部署和在操作环境(洛桑大学医院)中测试的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验