Department of Electrical Engineering & Computer Science, University of Cincinnati, Cincinnati, OH 45221, USA.
Lab Chip. 2018 Sep 11;18(18):2816-2825. doi: 10.1039/c8lc00186c.
Moving to ultra-low (<100 nL) sample volumes presents numerous challenges, many of which can be resolved by implementation of open nanofluidic films. These nanofluidic films are fabricated using a hexagonal network of gold-coated open microchannels which capture all of the following innovative advantages: (1) sample volumes of <100 nL cm-2; (2) zero analyte exchange and loss with the film materials; (3) rapid and omni-directional wicking transport of >500 nL min-1 per square of film; (4) ultra-simple roll-to-roll fabrication; (5) stable and bio-compatible super-hydrophilicity for weeks in air by peptide surface modification. Validation includes both detailed in vitro characterization and in vivo validation with sweat transport from the human skin. Sampling times (skin-to-sensor) of <3 min were achieved, setting new benchmarks for the field of wearable sweat sensing. This work addresses significant challenges for sweat biosensing, or for any other nano-liter regime (<100 nL) fluid sampling and sensing application.
将样品体积移至超低(<100 nL)水平会带来诸多挑战,而这些挑战中的许多都可以通过实施开放式纳流控薄膜来解决。这些纳流控薄膜是使用涂有金的开放式微通道的六方网格结构制造的,它们具有以下所有创新优势:(1)<100 nL cm-2 的样品体积;(2)与薄膜材料零交换和零损失的分析物;(3)>500 nL min-1 每平方薄膜的快速全方位芯吸传输;(4)超简单的卷对卷制造;(5)通过肽表面修饰,在空气中保持数周的稳定且生物兼容的超亲水性。验证包括详细的体外表征和体内验证,涉及从人体皮肤中汗液的传输。<3 分钟的采样时间(皮肤到传感器),为可穿戴汗液感应领域设定了新的基准。这项工作解决了汗液生物感应或任何其他纳升级(<100 nL)流体采样和感应应用的重大挑战。