Suppr超能文献

核受体超家族:结构视角。

The nuclear receptor superfamily: A structural perspective.

机构信息

Department of Biochemistry, Emory School of Medicine, Atlanta, 30322, Georgia.

出版信息

Protein Sci. 2018 Nov;27(11):1876-1892. doi: 10.1002/pro.3496.

Abstract

Nuclear receptors (NRs) are a family of transcription factors that regulate numerous physiological processes such as metabolism, reproduction, inflammation, as well as the circadian rhythm. NRs sense changes in lipid metabolite levels to drive differential gene expression, producing distinct physiologic effects. This is an allosteric process whereby binding a cognate ligand and specific DNA sequences drives the recruitment of diverse transcriptional co-regulators at chromatin and ultimately transactivation or transrepression of target genes. Dysregulation of NR signaling leads to various malignances, metabolic disorders, and inflammatory disease. Given their important role in physiology and ability to respond to small lipophilic ligands, NRs have emerged as valuable therapeutic targets. Here, we summarize and discuss the recent progress on understanding the complex mechanism of action of NRs, primarily from a structural perspective. Finally, we suggest future studies to improve our understanding of NR signaling and better design drugs by integrating multiple structural and biophysical approaches.

摘要

核受体 (NRs) 是一类转录因子,它们调节着许多生理过程,如代谢、生殖、炎症以及昼夜节律。NRs 可以感知脂质代谢物水平的变化,从而驱动基因表达的差异,产生不同的生理效应。这是一个变构过程,通过结合同源配体和特定的 DNA 序列,在染色质上招募各种转录共调节因子,并最终导致靶基因的转录激活或转录抑制。NR 信号的失调会导致各种恶性肿瘤、代谢紊乱和炎症性疾病。鉴于它们在生理学中的重要作用以及对小亲脂性配体的响应能力,NR 已成为有价值的治疗靶点。在这里,我们从结构的角度总结和讨论了近年来对 NR 作用机制的理解的最新进展。最后,我们提出了未来的研究建议,以通过整合多种结构和生物物理方法来提高我们对 NR 信号的理解,并更好地设计药物。

相似文献

1
The nuclear receptor superfamily: A structural perspective.
Protein Sci. 2018 Nov;27(11):1876-1892. doi: 10.1002/pro.3496.
2
Nuclear receptors and chromatin: an inducible couple.
J Mol Endocrinol. 2014 Jan 30;52(2):R137-49. doi: 10.1530/JME-13-0170. Print 2014 Apr.
3
International Union of Basic and Clinical Pharmacology CXIII: Nuclear Receptor Superfamily-Update 2023.
Pharmacol Rev. 2023 Nov;75(6):1233-1318. doi: 10.1124/pharmrev.121.000436. Epub 2023 Aug 16.
4
In-depth proteomic characterization of endogenous nuclear receptors in mouse liver.
Mol Cell Proteomics. 2013 Feb;12(2):473-84. doi: 10.1074/mcp.M112.022319. Epub 2012 Nov 29.
5
Allosteric effects govern nuclear receptor action: DNA appears as a player.
Sci Signal. 2009 Jun 2;2(73):pe34. doi: 10.1126/scisignal.273pe34.
6
Nuclear receptor: Structure and function.
Prog Mol Biol Transl Sci. 2023;196:209-227. doi: 10.1016/bs.pmbts.2022.07.014. Epub 2022 Nov 21.
7
Evolution of the repertoire of nuclear receptor binding sites in genomes.
Mol Cell Endocrinol. 2011 Mar 1;334(1-2):76-82. doi: 10.1016/j.mce.2010.10.021. Epub 2010 Nov 4.
8
Structural studies on nuclear receptors.
Cell Mol Life Sci. 2000 Nov;57(12):1748-69. doi: 10.1007/PL00000656.
9
Transcriptional controls by nuclear fat-soluble vitamin receptors through chromatin reorganization.
Biosci Biotechnol Biochem. 2011;75(3):410-3. doi: 10.1271/bbb.100807. Epub 2011 Mar 7.
10
Nuclear receptors in bone physiology and diseases.
Physiol Rev. 2013 Apr;93(2):481-523. doi: 10.1152/physrev.00008.2012.

引用本文的文献

1
Isoform differences drive functional diversity of NHR-49.
MicroPubl Biol. 2025 Aug 1;2025. doi: 10.17912/micropub.biology.001655. eCollection 2025.
2
Imaging Ligand-Driven PPAR Activities Using Single-Chain Bioluminescent Probes.
ACS Omega. 2025 Jul 24;10(30):33850-33861. doi: 10.1021/acsomega.5c04665. eCollection 2025 Aug 5.
4
Functional Changes Associated With the Subcellular Localization of the Nuclear Receptor NR4A1.
Biochem Res Int. 2025 Jul 24;2025:4849733. doi: 10.1155/bri/4849733. eCollection 2025.
5
Dysregulation of metabolites and high-altitude illnesses development under plateau conditions.
Front Physiol. 2025 Jul 2;16:1600374. doi: 10.3389/fphys.2025.1600374. eCollection 2025.
6
TRIM33 loss reduces androgen receptor transcriptional output and H2BK120 ubiquitination.
Commun Biol. 2025 Jul 11;8(1):1043. doi: 10.1038/s42003-025-08449-2.
9
Anticancer Effects of Withanolides: In Silico Prediction of Pharmacological Properties.
Molecules. 2025 Jun 4;30(11):2457. doi: 10.3390/molecules30112457.
10
Conformational modulation of intrinsically disordered transactivation domains for cancer therapy.
PNAS Nexus. 2025 May 9;4(5):pgaf152. doi: 10.1093/pnasnexus/pgaf152. eCollection 2025 May.

本文引用的文献

1
Structural and Functional Impacts of ER Coactivator Sequential Recruitment.
Mol Cell. 2017 Sep 7;67(5):733-743.e4. doi: 10.1016/j.molcel.2017.07.026. Epub 2017 Aug 24.
2
Single-molecule analysis of steroid receptor and cofactor action in living cells.
Nat Commun. 2017 Jun 21;8:15896. doi: 10.1038/ncomms15896.
3
Structure and Dynamics of the Liver Receptor Homolog 1-PGC1 Complex.
Mol Pharmacol. 2017 Jul;92(1):1-11. doi: 10.1124/mol.117.108514. Epub 2017 Mar 31.
4
Quantifying transcription factor binding dynamics at the single-molecule level in live cells.
Methods. 2017 Jul 1;123:76-88. doi: 10.1016/j.ymeth.2017.03.014. Epub 2017 Mar 15.
5
Glucocorticoid receptor control of transcription: precision and plasticity via allostery.
Nat Rev Mol Cell Biol. 2017 Mar;18(3):159-174. doi: 10.1038/nrm.2016.152. Epub 2017 Jan 5.
7
Single-Cell and Single-Molecule Analysis of Gene Expression Regulation.
Annu Rev Genet. 2016 Nov 23;50:267-291. doi: 10.1146/annurev-genet-120215-034854.
8
17-OxoDHA Is a PPARα/γ Dual Covalent Modifier and Agonist.
ACS Chem Biol. 2016 Sep 16;11(9):2447-55. doi: 10.1021/acschembio.6b00338. Epub 2016 Jul 1.
9
Transcription Dynamics in Living Cells.
Annu Rev Biophys. 2016 Jul 5;45:25-47. doi: 10.1146/annurev-biophys-062215-010838. Epub 2016 Apr 27.
10
Steroid Receptors Reprogram FoxA1 Occupancy through Dynamic Chromatin Transitions.
Cell. 2016 Apr 21;165(3):593-605. doi: 10.1016/j.cell.2016.02.067. Epub 2016 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验