Suppr超能文献

使用静息态 EEG 连接测量在一周后区分 rTMS 治疗抑郁症的反应者和非反应者。

Differentiating responders and non-responders to rTMS treatment for depression after one week using resting EEG connectivity measures.

机构信息

Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia..

Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School, Commercial Rd, Melbourne, Victoria, Australia.

出版信息

J Affect Disord. 2019 Jan 1;242:68-79. doi: 10.1016/j.jad.2018.08.058. Epub 2018 Aug 14.

Abstract

BACKGROUND

Non-response to repetitive transcranial magnetic stimulation (rTMS) treatment for depression is costly for both patients and clinics. Simple and cheap methods to predict response would reduce this burden. Resting EEG measures differentiate responders from non-responders, so may have utility for response prediction.

METHODS

Fifty patients with treatment resistant depression and 21 controls had resting electroencephalography (EEG) recorded at baseline (BL). Patients underwent 5-8 weeks of rTMS treatment, with EEG recordings repeated at week 1 (W1). Forty-two participants had valid BL and W1 EEG data, and 12 were responders. Responders and non-responders were compared at BL and W1 in measures of theta (4-8 Hz) and alpha (8-13 Hz) power and connectivity, frontal theta cordance and alpha peak frequency. Control group comparisons were made for measures that differed between responders and non-responders. A machine learning algorithm assessed the potential to differentiate responders from non-responders using EEG measures in combination with change in depression scores from BL to W1.

RESULTS

Responders showed elevated theta connectivity across BL and W1. No other EEG measures differed between groups. Responders could be distinguished from non-responders with a mean sensitivity of 0.84 (p = 0.001) and specificity of 0.89 (p = 0.002) using cross-validated machine learning classification on the combination of all EEG and mood measures.

LIMITATIONS

The low response rate limited our sample size to only 12 responders.

CONCLUSION

Resting theta connectivity at BL and W1 differ between responders and non-responders, and show potential for predicting response to rTMS treatment for depression.

摘要

背景

对于抑郁症患者,重复经颅磁刺激(rTMS)治疗无应答既增加了患者的经济负担,也增加了诊所的经济负担。简单且廉价的应答预测方法将减轻这种负担。静息脑电图(EEG)测量可以区分应答者和无应答者,因此可能对应答预测具有实用性。

方法

50 名难治性抑郁症患者和 21 名对照者在基线(BL)时记录静息 EEG。患者接受 5-8 周的 rTMS 治疗,在第 1 周(W1)重复 EEG 记录。42 名参与者有有效的 BL 和 W1 EEG 数据,其中 12 名是应答者。比较应答者和无应答者在 BL 和 W1 时的θ(4-8 Hz)和α(8-13 Hz)功率和连接性、额部θ协调性和α峰值频率的差异。对与应答者和无应答者之间存在差异的指标进行对照组比较。使用 EEG 测量值结合 BL 至 W1 时抑郁评分的变化,机器学习算法评估了区分应答者和无应答者的潜力。

结果

应答者在 BL 和 W1 时表现出较高的θ连接性。各组之间没有其他 EEG 测量值存在差异。使用 EEG 和情绪测量值的组合进行交叉验证机器学习分类,可以区分应答者和无应答者,其平均敏感性为 0.84(p=0.001),特异性为 0.89(p=0.002)。

局限性

低应答率限制了我们的样本量,只有 12 名应答者。

结论

BL 和 W1 的静息θ连接性在应答者和无应答者之间存在差异,并且显示出预测 rTMS 治疗抑郁症应答的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验