Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE , Universidad de Buenos Aires, CONICET , Pabellón 2, 3er piso, Ciudad Universitaria , C1428EHA Ciudad Autónoma de Buenos Aires , Argentina.
Max-Planck Institut für Chemische Energiekonversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany.
Inorg Chem. 2018 Oct 1;57(19):12270-12281. doi: 10.1021/acs.inorgchem.8b01958. Epub 2018 Sep 17.
This work demonstrates that the acidity of nitroxyl (HNO) coordinated to a metal core is significantly influenced by its coordination environment. The possibility that NO complexes may be the predominant species in physiological environments has implications in bioinorganic chemistry and biochemistry. This (apparently simple) result pushed us to delve into the basic aspects of HNO coordination chemistry. A series of three closely related {RuNO} complexes have been prepared and structurally characterized, namely [Ru(Me[9]aneN)(L)(NO)], with L = 2,2'-bipyridine, 4,4'-dimethoxy-2,2'-bipyridine, and 2,2'-bipyrimidine. These species have also been thoroughly studied in solution, allowing for a systematic exploration of their electrochemical properties in a wide pH range, thus granting access and characterization of the elusive {RuNO} systems. Modulation of the electronic density in the {RuNO} fragment introduced by changing the bidentate coligand L produced only subtle structural modifications but affected dramatically other properties, most noticeably the redox potentials of the {RuNO} couples and the acidity of bound HNO, which spans over a range of almost three pH units. Controlling the acidity of coordinated HNO by the rational design of coordination compounds is of fundamental relevancy in the field of inorganic chemistry and also fuels the growing interest of the community in understanding the role that different HNO-derived species can play in biological systems.
这项工作表明,氮氧自由基(HNO)与金属核心配位后的酸度会受到其配位环境的显著影响。NO 配合物可能是生理环境中主要存在的物种,这一可能性在生物无机化学和生物化学领域具有重要意义。这一(显然简单)的结果促使我们深入研究 HNO 配位化学的基本方面。我们已经制备并结构表征了一系列三个密切相关的 {RuNO} 配合物,即 [Ru(Me[9]aneN)(L)(NO)],其中 L = 2,2'-联吡啶、4,4'-二甲氧基-2,2'-联吡啶和 2,2'-联嘧啶。这些物种也在溶液中进行了深入研究,允许在宽 pH 范围内系统地探索它们的电化学性质,从而可以获得和表征难以捉摸的 {RuNO} 体系。通过改变双齿配位体 L 来调节 {RuNO} 片段中的电子密度,仅产生了细微的结构修饰,但却显著影响了其他性质,最明显的是 {RuNO} 对的氧化还原电位和结合 HNO 的酸度,其跨度几乎达到三个 pH 单位。通过合理设计配合物来控制配位 HNO 的酸度,在无机化学领域具有重要意义,也激发了人们越来越大的兴趣,希望了解不同 HNO 衍生物种在生物系统中可以发挥的作用。