Suppr超能文献

ΔNp63α 通过抑制 TGFB2 表达和 RHOA 活性来驱动鳞状细胞癌中的细胞增殖。

ΔNp63α Suppresses TGFB2 Expression and RHOA Activity to Drive Cell Proliferation in Squamous Cell Carcinomas.

机构信息

Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.

Functional Genomics Facility, University of Colorado School of Medicine, Aurora, CO 80045, USA.

出版信息

Cell Rep. 2018 Sep 18;24(12):3224-3236. doi: 10.1016/j.celrep.2018.08.058.

Abstract

The transcriptional repressor ΔNp63α is a potent oncogene widely overexpressed in squamous cell carcinomas (SCCs) of diverse tissue origins, where it promotes malignant cell proliferation and survival. We report here the results of a genome-wide CRISPR screen to identify pathways controlling ΔNp63α-dependent cell proliferation, which revealed that the small GTPase RHOA blocks cell division upon ΔNp63α knockdown. After ΔNp63α depletion, RHOA activity is increased, and cells undergo RHOA-dependent proliferation arrest along with transcriptome changes indicative of increased TGF-β signaling. Mechanistically, ΔNp63α represses transcription of TGFB2, which induces a cell cycle arrest that is partially dependent on RHOA. Ectopic TGFB2 activates RHOA and impairs SCC proliferation, and TGFB2 neutralization restores cell proliferation during ΔNp63α depletion. Genomic data from tumors demonstrate inactivation of RHOA and the TGFBR2 receptor and ΔNp63α overexpression in more than 80% of lung SCCs. These results reveal a signaling pathway controlling SCC proliferation that is potentially amenable to pharmacological intervention.

摘要

转录抑制因子 ΔNp63α 广泛过表达于多种组织来源的鳞状细胞癌(SCC)中,是一种强有力的致癌基因,可促进恶性细胞增殖和存活。我们在此报告了一项全基因组 CRISPR 筛选结果,以鉴定控制 ΔNp63α 依赖性细胞增殖的途径,该研究发现小 GTPase RHOA 在 ΔNp63α 敲低时阻止细胞分裂。在 ΔNp63α 耗竭后,RHOA 活性增加,细胞发生 RHOA 依赖性增殖停滞,并伴有 TGF-β 信号增强的转录组变化。在机制上,ΔNp63α 抑制 TGFB2 的转录,后者诱导细胞周期停滞,部分依赖于 RHOA。外源性 TGFB2 激活 RHOA 并损害 SCC 增殖,而在 ΔNp63α 耗竭期间中和 TGFB2 可恢复细胞增殖。肿瘤的基因组数据表明,超过 80%的肺 SCC 中 RHOA 和 TGFBR2 受体失活以及 ΔNp63α 过表达。这些结果揭示了一种控制 SCC 增殖的信号通路,可能适合药物干预。

相似文献

1
ΔNp63α Suppresses TGFB2 Expression and RHOA Activity to Drive Cell Proliferation in Squamous Cell Carcinomas.
Cell Rep. 2018 Sep 18;24(12):3224-3236. doi: 10.1016/j.celrep.2018.08.058.
2
ΔNp63α utilizes multiple mechanisms to repress transcription in squamous cell carcinoma cells.
Cell Cycle. 2013 Feb 1;12(3):409-16. doi: 10.4161/cc.23593. Epub 2013 Jan 16.
3
Molecular Mechanisms of p63-Mediated Squamous Cancer Pathogenesis.
Int J Mol Sci. 2019 Jul 23;20(14):3590. doi: 10.3390/ijms20143590.
7
ΔNp63α represses anti-proliferative genes via H2A.Z deposition.
Genes Dev. 2012 Oct 15;26(20):2325-36. doi: 10.1101/gad.198069.112. Epub 2012 Sep 26.
8
BRD4 Regulates Transcription Factor ΔNp63α to Drive a Cancer Stem Cell Phenotype in Squamous Cell Carcinomas.
Cancer Res. 2021 Dec 15;81(24):6246-6258. doi: 10.1158/0008-5472.CAN-21-0707. Epub 2021 Oct 25.
9
Phospho-ΔNp63α/SREBF1 protein interactions: bridging cell metabolism and cisplatin chemoresistance.
Cell Cycle. 2012 Oct 15;11(20):3810-27. doi: 10.4161/cc.22022. Epub 2012 Sep 5.

引用本文的文献

2
3
Mesenchymal stem cell exosomes enhance the development of hair follicle to ameliorate androgenetic alopecia.
World J Stem Cells. 2025 Mar 26;17(3):102088. doi: 10.4252/wjsc.v17.i3.102088.
4
Crosstalk between paralogs and isoforms influences p63-dependent regulatory element activity.
Nucleic Acids Res. 2024 Dec 11;52(22):13812-13831. doi: 10.1093/nar/gkae1143.
5
Novel strategy for activating gene expression through triplex DNA formation targeting epigenetically suppressed genes.
RSC Chem Biol. 2024 Jul 31;5(9):884-890. doi: 10.1039/d4cb00134f. eCollection 2024 Aug 28.
6
Role of Stem Cells in the Pathogenesis and Malignant Transformation of Oral Submucous Fibrosis.
Stem Cell Rev Rep. 2024 Aug;20(6):1512-1520. doi: 10.1007/s12015-024-10744-0. Epub 2024 Jun 5.
7
Context dependent activity of p63-bound gene regulatory elements.
bioRxiv. 2024 May 12:2024.05.09.593326. doi: 10.1101/2024.05.09.593326.
9
FAM193A is a positive regulator of p53 activity.
Cell Rep. 2023 Mar 28;42(3):112230. doi: 10.1016/j.celrep.2023.112230. Epub 2023 Mar 9.

本文引用的文献

1
Regulation of RhoA GTPase and various transcription factors in the RhoA pathway.
J Cell Physiol. 2018 Sep;233(9):6381-6392. doi: 10.1002/jcp.26487. Epub 2018 Mar 25.
2
Loss of RhoA promotes skin tumor formation and invasion by upregulation of RhoB.
Oncogene. 2018 Feb 15;37(7):847-860. doi: 10.1038/onc.2017.333. Epub 2017 Oct 23.
3
ACTL6A Is Co-Amplified with p63 in Squamous Cell Carcinoma to Drive YAP Activation, Regenerative Proliferation, and Poor Prognosis.
Cancer Cell. 2017 Jan 9;31(1):35-49. doi: 10.1016/j.ccell.2016.12.001. Epub 2016 Dec 29.
4
The pol II CTD: new twists in the tail.
Nat Struct Mol Biol. 2016 Sep 6;23(9):771-7. doi: 10.1038/nsmb.3285.
5
Trisomy 21 consistently activates the interferon response.
Elife. 2016 Jul 29;5:e16220. doi: 10.7554/eLife.16220.
6
JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.
Nucleic Acids Res. 2016 Jan 4;44(D1):D110-5. doi: 10.1093/nar/gkv1176. Epub 2015 Nov 3.
7
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
9
RHOA inactivation enhances Wnt signalling and promotes colorectal cancer.
Nat Commun. 2014 Nov 21;5:5458. doi: 10.1038/ncomms6458.
10
Comprehensive molecular profiling of lung adenocarcinoma.
Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验