Suppr超能文献

一种展示多感官学习益处的振荡神经网络模型。

An oscillatory neural network model that demonstrates the benefits of multisensory learning.

作者信息

Rao A Ravishankar

机构信息

Gildart Haase School of Computer Sciences and Engineering, Fairleigh Dickinson University, Teaneck, NJ USA.

出版信息

Cogn Neurodyn. 2018 Oct;12(5):481-499. doi: 10.1007/s11571-018-9489-x. Epub 2018 Jun 7.

Abstract

Since the world consists of objects that stimulate multiple senses, it is advantageous for a vertebrate to integrate all the sensory information available. However, the precise mechanisms governing the temporal dynamics of multisensory processing are not well understood. We develop a computational modeling approach to investigate these mechanisms. We present an oscillatory neural network model for multisensory learning based on sparse spatio-temporal encoding. Recently published results in cognitive science show that multisensory integration produces greater and more efficient learning. We apply our computational model to qualitatively replicate these results. We vary learning protocols and system dynamics, and measure the rate at which our model learns to distinguish superposed presentations of multisensory objects. We show that the use of multiple channels accelerates learning and recall by up to 80%. When a sensory channel becomes disabled, the performance degradation is less than that experienced during the presentation of non-congruent stimuli. This research furthers our understanding of fundamental brain processes, paving the way for multiple advances including the building of machines with more human-like capabilities.

摘要

由于世界由刺激多种感官的物体组成,对于脊椎动物而言,整合所有可用的感官信息是有益的。然而,多感官处理的时间动态的精确机制尚未得到很好的理解。我们开发了一种计算建模方法来研究这些机制。我们提出了一种基于稀疏时空编码的多感官学习振荡神经网络模型。认知科学最近发表的结果表明,多感官整合能产生更高效的学习。我们应用我们的计算模型来定性地复制这些结果。我们改变学习协议和系统动态,并测量我们的模型学习区分多感官物体叠加呈现的速率。我们表明,使用多个通道可将学习和回忆速度提高多达80%。当一个感官通道失效时,性能下降程度小于呈现非一致刺激时的情况。这项研究加深了我们对基本大脑过程的理解,为包括构建具有更类人能力的机器在内的多项进展铺平了道路。

相似文献

1
An oscillatory neural network model that demonstrates the benefits of multisensory learning.
Cogn Neurodyn. 2018 Oct;12(5):481-499. doi: 10.1007/s11571-018-9489-x. Epub 2018 Jun 7.
2
From Near-Optimal Bayesian Integration to Neuromorphic Hardware: A Neural Network Model of Multisensory Integration.
Front Neurorobot. 2020 May 15;14:29. doi: 10.3389/fnbot.2020.00029. eCollection 2020.
3
Attention modeled as information in learning multisensory integration.
Neural Netw. 2015 May;65:44-52. doi: 10.1016/j.neunet.2015.01.004. Epub 2015 Feb 2.
4
NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data.
Neural Netw. 2014 Apr;52:62-76. doi: 10.1016/j.neunet.2014.01.006. Epub 2014 Jan 20.
5
Neural mechanisms for synthesizing sensory information and producing adaptive behaviors.
Exp Brain Res. 1998 Nov;123(1-2):124-35. doi: 10.1007/s002210050553.
7
Transfer of Audio-Visual Temporal Training to Temporal and Spatial Audio-Visual Tasks.
Multisens Res. 2018 Jan 1;31(6):556-578. doi: 10.1163/22134808-00002611.
8
Development of the Mechanisms Governing Midbrain Multisensory Integration.
J Neurosci. 2018 Apr 4;38(14):3453-3465. doi: 10.1523/JNEUROSCI.2631-17.2018. Epub 2018 Mar 1.
10
Benefits of multisensory learning.
Trends Cogn Sci. 2008 Nov;12(11):411-7. doi: 10.1016/j.tics.2008.07.006.

引用本文的文献

1
Brain-inspired multisensory integration neural network for cross-modal recognition through spatiotemporal dynamics and deep learning.
Cogn Neurodyn. 2024 Dec;18(6):3615-3628. doi: 10.1007/s11571-023-09932-4. Epub 2023 Feb 2.
2
Computing with oscillators from theoretical underpinnings to applications and demonstrators.
Npj Unconv Comput. 2024;1(1):14. doi: 10.1038/s44335-024-00015-z. Epub 2024 Dec 4.
3
The emergence of the multisensory brain: From the womb to the first steps.
iScience. 2023 Dec 15;27(1):108758. doi: 10.1016/j.isci.2023.108758. eCollection 2024 Jan 19.
4
A multi-sensory stimulating attention model for cities' taxi service demand prediction.
Sci Rep. 2022 Feb 23;12(1):3065. doi: 10.1038/s41598-022-07072-z.
5
Research progress of neurodynamics in China.
Cogn Neurodyn. 2021 Feb;15(1):1-2. doi: 10.1007/s11571-021-09665-2. Epub 2021 Feb 27.
6
Gamma Oscillations Facilitate Effective Learning in Excitatory-Inhibitory Balanced Neural Circuits.
Neural Plast. 2021 Jan 19;2021:6668175. doi: 10.1155/2021/6668175. eCollection 2021.
7
Probabilistically segregated neural circuits and subcritical linguistics.
Cogn Neurodyn. 2020 Dec;14(6):837-848. doi: 10.1007/s11571-020-09602-9. Epub 2020 Jun 19.
8
A stacked sparse auto-encoder and back propagation network model for sensory event detection via a flexible ECoG.
Cogn Neurodyn. 2020 Oct;14(5):591-607. doi: 10.1007/s11571-020-09603-8. Epub 2020 Jun 1.
9
Removing uncertainty in neural networks.
Cogn Neurodyn. 2020 Jun;14(3):339-345. doi: 10.1007/s11571-020-09574-w. Epub 2020 Feb 27.
10
A spiking neural network model of spatial and visual mental imagery.
Cogn Neurodyn. 2020 Apr;14(2):239-251. doi: 10.1007/s11571-019-09566-5. Epub 2019 Dec 5.

本文引用的文献

1
Statistically Optimal Multisensory Cue Integration: A Practical Tutorial.
Multisens Res. 2016;29(4-5):279-317. doi: 10.1163/22134808-00002510.
2
Frequency-difference-dependent stochastic resonance in neural systems.
Phys Rev E. 2017 Aug;96(2-1):022415. doi: 10.1103/PhysRevE.96.022415. Epub 2017 Aug 25.
3
Perception Science in the Age of Deep Neural Networks.
Front Psychol. 2017 Feb 2;8:142. doi: 10.3389/fpsyg.2017.00142. eCollection 2017.
4
A Spiking Neurocomputational Model of High-Frequency Oscillatory Brain Responses to Words and Pseudowords.
Front Comput Neurosci. 2017 Jan 18;10:145. doi: 10.3389/fncom.2016.00145. eCollection 2016.
5
Reaction times in visual search can be explained by a simple model of neural synchronization.
Neural Netw. 2017 Mar;87:1-7. doi: 10.1016/j.neunet.2016.12.003. Epub 2016 Dec 10.
6
The multisensory function of the human primary visual cortex.
Neuropsychologia. 2016 Mar;83:161-169. doi: 10.1016/j.neuropsychologia.2015.08.011. Epub 2015 Aug 11.
7
Computational rationality: A converging paradigm for intelligence in brains, minds, and machines.
Science. 2015 Jul 17;349(6245):273-8. doi: 10.1126/science.aac6076. Epub 2015 Jul 16.
8
A multisensory perspective of working memory.
Front Hum Neurosci. 2015 Apr 21;9:197. doi: 10.3389/fnhum.2015.00197. eCollection 2015.
9
Single-trial multisensory memories affect later auditory and visual object discrimination.
Cognition. 2015 May;138:148-60. doi: 10.1016/j.cognition.2015.02.003. Epub 2015 Mar 2.
10
Deep learning in neural networks: an overview.
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验