Suppr超能文献

近年来酶法蛋白质标记技术的进展及其应用。

Recent progress in enzymatic protein labelling techniques and their applications.

机构信息

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

Chem Soc Rev. 2018 Dec 21;47(24):9106-9136. doi: 10.1039/c8cs00537k. Epub 2018 Sep 27.

Abstract

Protein-based conjugates are valuable constructs for a variety of applications. Conjugation of proteins to fluorophores is commonly used to study their cellular localization and the protein-protein interactions. Modification of therapeutic proteins with either polymers or cytotoxic moieties greatly enhances their pharmacokinetics or potency. To label a protein of interest, conventional direct chemical reaction with the side-chains of native amino acids often yields heterogeneously modified products. This renders their characterization complicated, requires difficult separation steps and may impact protein function. Although modification can also be achieved via the insertion of unnatural amino acids bearing bioorthogonal functional groups, these methods can have lower protein expression yields, limiting large scale production. As a site-specific modification method, enzymatic protein labelling is highly efficient and robust under mild reaction conditions. Significant progress has been made over the last five years in modifying proteins using enzymatic methods for numerous applications, including the creation of clinically relevant conjugates with polymers, cytotoxins or imaging agents, fluorescent or affinity probes to study complex protein interaction networks, and protein-linked materials for biosensing. This review summarizes developments in enzymatic protein labelling over the last five years for a panel of ten enzymes, including sortase A, subtiligase, microbial transglutaminase, farnesyltransferase, N-myristoyltransferase, phosphopantetheinyl transferases, tubulin tyrosin ligase, lipoic acid ligase, biotin ligase and formylglycine generating enzyme.

摘要

蛋白质缀合物是各种应用的有价值的构建体。将蛋白质与荧光团缀合通常用于研究其细胞定位和蛋白质-蛋白质相互作用。用聚合物或细胞毒性部分修饰治疗性蛋白质可大大增强其药代动力学或效力。为了标记感兴趣的蛋白质,通常通过与天然氨基酸的侧链进行直接化学反应来进行常规修饰,往往会得到异质修饰的产物。这使得它们的表征变得复杂,需要困难的分离步骤,并且可能影响蛋白质的功能。尽管也可以通过插入带有生物正交官能团的非天然氨基酸来进行修饰,但这些方法的蛋白质表达产量可能较低,限制了大规模生产。作为一种定点修饰方法,酶蛋白标记在温和的反应条件下具有高效和稳健的特点。在过去的五年中,在使用酶法修饰蛋白质方面取得了重大进展,包括用聚合物、细胞毒素或成像剂、荧光或亲和探针来研究复杂的蛋白质相互作用网络,以及用于生物传感的蛋白质连接材料,用于许多应用。本文综述了过去五年中十种酶的酶蛋白标记的发展情况,包括 sortase A、枯草杆菌蛋白酶、微生物转谷氨酰胺酶、法呢基转移酶、N-豆蔻酰转移酶、磷酸泛酰巯基乙胺转移酶、微管酪氨酸连接酶、硫辛酸连接酶、生物素连接酶和生成甲酰甘氨酸的酶。

相似文献

1
Recent progress in enzymatic protein labelling techniques and their applications.
Chem Soc Rev. 2018 Dec 21;47(24):9106-9136. doi: 10.1039/c8cs00537k. Epub 2018 Sep 27.
2
Enzymatic labeling of proteins: techniques and approaches.
Bioconjug Chem. 2013 Aug 21;24(8):1277-94. doi: 10.1021/bc400102w.
3
Enzymatic Methods for the Site-Specific Radiolabeling of Targeting Proteins.
Molecules. 2021 Jun 8;26(12):3492. doi: 10.3390/molecules26123492.
4
Site-Selective Enzymatic Labeling of Designed Ankyrin Repeat Proteins Using Protein Farnesyltransferase.
Methods Mol Biol. 2019;2033:207-219. doi: 10.1007/978-1-4939-9654-4_14.
5
Tub-Tag Labeling; Chemoenzymatic Incorporation of Unnatural Amino Acids.
Methods Mol Biol. 2018;1728:67-93. doi: 10.1007/978-1-4939-7574-7_4.
7
Chemoenzymatic reversible immobilization and labeling of proteins without prior purification.
J Am Chem Soc. 2012 May 23;134(20):8455-67. doi: 10.1021/ja211308s. Epub 2012 May 8.
8
Chemical biology-based approaches on fluorescent labeling of proteins in live cells.
Mol Biosyst. 2013 May;9(5):862-72. doi: 10.1039/c2mb25422k.
9
Site-specific fluorescent labeling of tubulin.
Methods Cell Biol. 2013;115:1-12. doi: 10.1016/B978-0-12-407757-7.00001-3.
10
The Journey for the Total Chemical Synthesis of a 53 kDa Protein.
Acc Chem Res. 2019 Dec 17;52(12):3361-3371. doi: 10.1021/acs.accounts.9b00372. Epub 2019 Sep 19.

引用本文的文献

1
Peroxynitrite-Activated Conditional Chemical Probe for the Affinity-Based Protein Modification.
Anal Chem. 2025 Jul 22;97(28):14912-14920. doi: 10.1021/acs.analchem.4c05580. Epub 2025 Jul 10.
2
Chemical tags and beyond: Live-cell protein labeling technologies for modern optical imaging.
Smart Mol. 2023 Aug 28;1(2):e20230002. doi: 10.1002/smo.20230002. eCollection 2023 Sep.
3
Asparaginyl Ligases with Engineered Substrate Specificity for Controlled, Sequential Transpeptidation Reactions.
J Am Chem Soc. 2025 Jun 25;147(25):21824-21831. doi: 10.1021/jacs.5c04693. Epub 2025 Jun 11.
4
Differentially labeled flaviviral protease-cofactor complex for NMR spectroscopic applications.
Protein Expr Purif. 2025 May;229:106684. doi: 10.1016/j.pep.2025.106684. Epub 2025 Feb 2.
5
Metabolic Tagging Technology of Exosomes-An Updated Review.
Curr Pharm Des. 2025;31(18):1430-1443. doi: 10.2174/0113816128338023241210140702.
6
Closing the Loop in the Carbon Cycle: Enzymatic Reactions Housed in Metal-Organic Frameworks for CO Conversion to Methanol.
Appl Biochem Biotechnol. 2025 Mar;197(3):1345-1392. doi: 10.1007/s12010-024-05111-1. Epub 2024 Nov 26.
7
Engineered FHA domains can bind to a variety of Phosphothreonine-containing peptides.
Protein Eng Des Sel. 2024 Jan 29;37. doi: 10.1093/protein/gzae014.
8
Sequence-Dependent Acylation of Peptide Lysine Residues by DNAzymes.
Chembiochem. 2024 Nov 4;25(21):e202400578. doi: 10.1002/cbic.202400578. Epub 2024 Oct 27.
9
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
10
Smart Molecular Imaging and Theranostic Probes by Enzymatic Molecular In Situ Self-Assembly.
JACS Au. 2024 Jul 3;4(7):2426-2450. doi: 10.1021/jacsau.4c00392. eCollection 2024 Jul 22.

本文引用的文献

1
2
Design of a glutamine substrate tag enabling protein labelling mediated by Bacillus subtilis transglutaminase.
PLoS One. 2018 May 30;13(5):e0197956. doi: 10.1371/journal.pone.0197956. eCollection 2018.
3
Chemoselective Peptide Modification via Photocatalytic Tryptophan β-Position Conjugation.
J Am Chem Soc. 2018 Jun 6;140(22):6797-6800. doi: 10.1021/jacs.8b03973. Epub 2018 May 23.
4
Chemo-Enzymatic Synthesis of Fluorescent Rab 7 Proteins: Tools to Study Vesicular Trafficking in Cells.
Angew Chem Int Ed Engl. 1999 Feb 15;38(4):509-512. doi: 10.1002/(SICI)1521-3773(19990215)38:4<509::AID-ANIE509>3.0.CO;2-3.
5
Transglutaminase and Sialyltransferase Enzymatic Approaches for Polymer Conjugation to Proteins.
Adv Protein Chem Struct Biol. 2018;112:123-142. doi: 10.1016/bs.apcsb.2018.01.003. Epub 2018 Feb 12.
6
Tailored Polyproteins Using Sequential Staple and Cut.
Bioconjug Chem. 2018 May 16;29(5):1714-1719. doi: 10.1021/acs.bioconjchem.8b00163. Epub 2018 Apr 30.
7
Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling.
Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):3834-3839. doi: 10.1073/pnas.1722336115. Epub 2018 Mar 26.
8
Tuning a Protein-Labeling Reaction to Achieve Highly Site Selective Lysine Conjugation.
Chembiochem. 2018 Apr 16;19(8):799-804. doi: 10.1002/cbic.201700611. Epub 2018 Mar 15.
9
Sortase-Mediated High-Throughput Screening Platform for Directed Enzyme Evolution.
ACS Comb Sci. 2018 Apr 9;20(4):203-211. doi: 10.1021/acscombsci.7b00153. Epub 2018 Feb 2.
10
Bioorthogonal strategies for site-directed decoration of biomaterials with therapeutic proteins.
J Control Release. 2018 Mar 10;273:68-85. doi: 10.1016/j.jconrel.2018.01.018. Epub 2018 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验