Kim Dabum, Ko Youngsang, Kwon Goomin, Kim Ung-Jin, You Jungmok
Department of Plant & Environmental New Resources , Kyung Hee University , 1732 Deogyeong-daero, Giheung-gu , Yongin-si , Gyeonggi-do 446-701 , South Korea.
ACS Appl Mater Interfaces. 2018 Nov 7;10(44):38517-38525. doi: 10.1021/acsami.8b15230. Epub 2018 Oct 26.
Transparent microelectrodes with high bendability are necessary to develop lightweight, small electronic devices that are highly portable. Here, we report a reliable fabrication method for transparent and highly bendable microelectrodes based on conductive silver nanowires (AgNWs) and 2,2,6,6-tetramethylpiperidine-1-oxy (TEMPO)-oxidized cellulose nanofibers (CNFs). The AgNW-based micropatterns were simply fabricated on glass via poly(ethylene glycol) photolithography and then completely transferred to transparent TEMPO-CNF nanopaper with high bendability via vacuum-assisted microcontact printing (μCP). The AgNW micropatterns were embedded in the surface layer of TEMPO-CNF nanopaper, enabling strong adhesion to the nanopaper substrate. The resulting AgNW micropatterns on the TEMPO-CNF nanopaper showed an optical transparency of 82% at 550 nm and a sheet resistance of 54 Ω/sq when the surface density of AgNWs was as low as 12.9 μg/cm. They exhibited good adhesion stability and excellent bending durability. After 12 peeling test cycles and 60 s sonication time, the sheet resistance of the AgNW networks embedded on TEMPO-CNF nanopaper increased by only ∼0.12 and ∼0.07 times, respectively. Furthermore, no significant change in electrical resistance was observed even after 3 bending cycles to nearly 90° and 500 cycles of 80% bending strain. Moreover, the AgNW patterns on TEMPO-CNF paper were successfully applied for constructing a transparent electric circuit as well as a solid-state electrochromic device. Overall, we proposed an effective way to fabricate AgNW micropatterns on transparent nanopaper, which can be expanded to various conductive materials for high-performance paper-based electronics.
为了开发高度便携的轻质小型电子设备,具有高柔韧性的透明微电极是必不可少的。在此,我们报告了一种基于导电银纳米线(AgNWs)和2,2,6,6-四甲基哌啶-1-氧化物(TEMPO)氧化纤维素纳米纤维(CNFs)的透明且高柔韧性微电极的可靠制造方法。基于AgNW的微图案通过聚乙二醇光刻简单地制备在玻璃上,然后通过真空辅助微接触印刷(μCP)完全转移到具有高柔韧性的透明TEMPO-CNF纳米纸上。AgNW微图案嵌入在TEMPO-CNF纳米纸的表层中,从而实现与纳米纸基材的牢固粘附。当AgNW的表面密度低至12.9μg/cm时,TEMPO-CNF纳米纸上所得的AgNW微图案在550nm处的光学透明度为82%,薄层电阻为54Ω/sq。它们表现出良好的粘附稳定性和出色的弯曲耐久性。在12次剥离测试循环和60秒超声处理时间后,嵌入在TEMPO-CNF纳米纸上的AgNW网络的薄层电阻仅分别增加了约0.12倍和约0.07倍。此外,即使在3次接近90°的弯曲循环和500次80%弯曲应变循环后,也未观察到电阻有明显变化。此外,TEMPO-CNF纸上的AgNW图案成功应用于构建透明电路以及固态电致变色器件。总体而言,我们提出了一种在透明纳米纸上制备AgNW微图案的有效方法,该方法可扩展到用于高性能纸质电子产品的各种导电材料。