Suppr超能文献

血管一氧化氮和活性氧的来源及其调节。

Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation.

机构信息

Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.

出版信息

Physiol Rev. 2019 Jan 1;99(1):311-379. doi: 10.1152/physrev.00036.2017.

Abstract

Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.

摘要

一氧化氮(NO)是一种具有重要信号作用的小分子自由基,在生理和病理生理学中都具有关键作用。生成足够水平的 NO 以调节血管阻力,从而维持足够的血流,这对血管的健康功能至关重要。一个新的范式表明,在缺氧条件下,专门的一氧化氮合酶产生的经典 NO 合成被亚硝酸盐还原途径所补充。与此同时,在血管系统中为了信号传递目的而产生活性氧物质(ROS),如超氧化物和过氧化氢,作为免疫反应的效应物,或作为细胞代谢的副产物。NO 和 ROS 可以由不同的酶产生,也可以通过同一酶通过交替的还原和氧化过程产生。后者的氧化还原酶系统包括一氧化氮合酶、钼喋呤酶和血红蛋白,它们可以通过还原分子氧形成超氧化物,或通过还原无机亚硝酸盐形成 NO。酶解偶联、氧张力变化以及辅酶和还原剂的浓度可以调节这些氧化还原酶产生的 NO/ROS,并决定健康和疾病中的氧化还原平衡。NO 和 ROS 生成机制的失调是心血管疾病的一个重要原因,也是治疗的靶点。在这篇综述中,我们将介绍心血管系统中 NO 和 ROS 的生物学特性,特别强调它们的形成和调节途径,以及在心血管疾病中管理 NO 和 ROS 的治疗挑战和机遇。

相似文献

1
Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation.
Physiol Rev. 2019 Jan 1;99(1):311-379. doi: 10.1152/physrev.00036.2017.
2
Regulation of cardiovascular cellular processes by S-nitrosylation.
Biochim Biophys Acta. 2012 Jun;1820(6):752-62. doi: 10.1016/j.bbagen.2011.04.002. Epub 2011 Apr 16.
3
Free radicals and antioxidants in normal physiological functions and human disease.
Int J Biochem Cell Biol. 2007;39(1):44-84. doi: 10.1016/j.biocel.2006.07.001. Epub 2006 Aug 4.
4
Cellular redox dysfunction in the development of cardiovascular diseases.
Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt A):2822-2829. doi: 10.1016/j.bbagen.2017.07.027. Epub 2017 Aug 2.
6
Subcellular localization of oxidants and redox modulation of endothelial nitric oxide synthase.
Circ J. 2012;76(11):2497-512. doi: 10.1253/circj.cj-12-1207. Epub 2012 Oct 18.
7
Reactive oxygen species: physiological roles in the regulation of vascular cells.
Curr Mol Med. 2014;14(9):1103-25. doi: 10.2174/1566524014666140603114010.
8
Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases.
J Mol Cell Cardiol. 2014 Aug;73:70-9. doi: 10.1016/j.yjmcc.2014.02.006. Epub 2014 Feb 19.
9
The opposing roles of NO and oxidative stress in cardiovascular disease.
Pharmacol Res. 2017 Feb;116:57-69. doi: 10.1016/j.phrs.2016.12.017. Epub 2016 Dec 15.
10
Nitric oxide in blood. The nitrosative-oxidative disequilibrium hypothesis on the pathogenesis of cardiovascular disease.
FEBS J. 2007 Feb;274(4):906-23. doi: 10.1111/j.1742-4658.2007.05660.x. Epub 2007 Jan 22.

引用本文的文献

2
Oxidative Stress in the Pathophysiology of Chronic Venous Disease: An Overview.
Antioxidants (Basel). 2025 Aug 12;14(8):989. doi: 10.3390/antiox14080989.
3
Antioxidants: powering the fight against fetal hypoxia.
Philos Trans R Soc Lond B Biol Sci. 2025 Aug 21;380(1933):20240183. doi: 10.1098/rstb.2024.0183.
4
Chronic kidney disease as a catalyst for cerebral microbleeds: understanding the underlying mechanisms and treatment approaches.
Front Med (Lausanne). 2025 Jun 25;12:1578666. doi: 10.3389/fmed.2025.1578666. eCollection 2025.
6
The Interplay Between Melatonin and Nitric Oxide: Mechanisms and Implications in Stroke Pathophysiology.
Antioxidants (Basel). 2025 Jun 13;14(6):724. doi: 10.3390/antiox14060724.
8
DNA binding effects of LDH nanozyme for aseptic osteolysis mitigation through STING pathway modulation.
J Nanobiotechnology. 2025 May 27;23(1):384. doi: 10.1186/s12951-025-03458-z.
10
Protective effects of lupeol on pesticides induced testicular and oxidative damage of male rats.
J Mol Histol. 2025 May 8;56(3):151. doi: 10.1007/s10735-025-10425-3.

本文引用的文献

1
Nitric Oxide: Chemical Puzzles Posed by a Biological Messenger.
Angew Chem Int Ed Engl. 1999 Jun 14;38(12):1714-1731. doi: 10.1002/(SICI)1521-3773(19990614)38:12<1714::AID-ANIE1714>3.0.CO;2-3.
2
Erythrocytes and Vascular Function: Oxygen and Nitric Oxide.
Front Physiol. 2018 Feb 22;9:125. doi: 10.3389/fphys.2018.00125. eCollection 2018.
3
Comparative and integrative metabolomics reveal that -nitrosation inhibits physiologically relevant metabolic enzymes.
J Biol Chem. 2018 Apr 27;293(17):6282-6296. doi: 10.1074/jbc.M117.817700. Epub 2018 Feb 26.
4
Arginase: A Multifaceted Enzyme Important in Health and Disease.
Physiol Rev. 2018 Apr 1;98(2):641-665. doi: 10.1152/physrev.00037.2016.
5
Nitric oxide signalling in cardiovascular health and disease.
Nat Rev Cardiol. 2018 May;15(5):292-316. doi: 10.1038/nrcardio.2017.224. Epub 2018 Feb 1.
6
Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation.
Mol Cell. 2018 Feb 1;69(3):438-450.e5. doi: 10.1016/j.molcel.2017.12.019. Epub 2018 Jan 18.
7
Alternative Splicing of NOX4 in the Failing Human Heart.
Front Physiol. 2017 Nov 22;8:935. doi: 10.3389/fphys.2017.00935. eCollection 2017.
9
Low-density lipoprotein modified by myeloperoxidase oxidants induces endothelial dysfunction.
Redox Biol. 2017 Oct;13:623-632. doi: 10.1016/j.redox.2017.08.004. Epub 2017 Aug 5.
10
A single nucleotide polymorphism causes enhanced radical oxygen species production by human aldehyde oxidase.
PLoS One. 2017 Jul 27;12(7):e0182061. doi: 10.1371/journal.pone.0182061. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验