Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, N6A 3K7, Canada.
Krembil Centre for Stem Cell Biology, Molecular Medicine Research Laboratories, Robarts Research Institute, London, Ontario, N6A 5B7, Canada.
J Biomed Mater Res A. 2019 Mar;107(3):571-585. doi: 10.1002/jbm.a.36573. Epub 2018 Nov 21.
Cell-based therapies involving the injection of adipose-derived stem/stromal cells (ASCs) within rationally designed biomaterials are a promising approach for stimulating angiogenesis. With this focus, the current work explored the effects of incorporating integrin-binding RGD or IKVAV peptides within in situ-gelling N-methacrylate glycol chitosan (MGC) hydrogels on the response of encapsulated human ASCs. Initial studies focused on hydrogel characterization to validate that the MGC, MGC-RGD, and MGC-IKVAV hydrogels had similar biomechanical properties. ASC viability following encapsulation and culture under 2% O2 was significantly impaired in the MGC-IKVAV group relative to the MGC and MGC-RGD groups. In contrast, sustained viability, along with enhanced cell spreading and metabolic activity were observed in the MGC-RGD group. Investigation of angiogenic transcription suggested that the incorporation of the peptide groups did not substantially alter the pro-angiogenic gene expression profile of the encapsulated ASCs after 7 days of culture under 2% O2. Consistent with the in vitro findings, preliminary in vivo characterization following subcutaneous implantation into NOD/SCID mice showed that ASC retention was enhanced in the MGC-RGD hydrogels relative to the MGC-IKVAV group at 14 days. Further, the encapsulated ASCs in the MGC and MGC-RGD groups promoted murine CD31 endothelial cell recruitment to the peri-implant region. Overall, the results indicate that the MGC-RGD and MGC hydrogels are promising platforms for ASC delivery, and suggest that strategies that support long-term ASC viability can augment in vivo angiogenesis through paracrine mechanisms. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 571-585, 2019.
基于细胞的疗法包括在合理设计的生物材料内注射脂肪来源的干细胞/基质细胞(ASCs),这是刺激血管生成的一种有前途的方法。本研究关注于将整合素结合的 RGD 或 IKVAV 肽整合到原位凝胶化的 N-甲基丙烯酰基乙二醇壳聚糖(MGC)水凝胶中对包封的人 ASC 反应的影响。最初的研究集中在水凝胶的特性上,以验证 MGC、MGC-RGD 和 MGC-IKVAV 水凝胶具有相似的生物力学特性。在 2%O2 下进行包封和培养后,MGC-IKVAV 组中人 ASC 的活力明显低于 MGC 和 MGC-RGD 组。相比之下,在 MGC-RGD 组中观察到持续的活力,同时细胞扩散和代谢活性增强。对血管生成转录的研究表明,在 2%O2 下培养 7 天后,肽基团的掺入并没有实质上改变包封的 ASC 的促血管生成基因表达谱。与体外研究结果一致,在 NOD/SCID 小鼠皮下植入后的初步体内表征表明,在 14 天时,MGC-RGD 水凝胶中 ASC 的保留率相对于 MGC-IKVAV 组增强。此外,MGC 和 MGC-RGD 组中的包封 ASC 促进了小鼠 CD31 内皮细胞募集到植入部位周围区域。总体而言,结果表明 MGC-RGD 和 MGC 水凝胶是 ASC 输送的有前途的平台,并表明支持 ASC 长期活力的策略可以通过旁分泌机制增强体内血管生成。 © 2018 Wiley Periodicals, Inc. J 生物材料 res 部分 A:571-585,2019。