Suppr超能文献

谷氨酰胺酶依赖性代谢对 Th17 和 Th1 细胞分化的不同调节。

Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism.

机构信息

Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.

Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

出版信息

Cell. 2018 Dec 13;175(7):1780-1795.e19. doi: 10.1016/j.cell.2018.10.001. Epub 2018 Nov 1.

Abstract

Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification. Though GLS deficiency diminished initial T cell activation and proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet to promote differentiation and effector function of CD4 Th1 and CD8 CTL cells. This was associated with altered chromatin accessibility and gene expression, including decreased PIK3IP1 in Th1 cells that sensitized to IL-2-mediated mTORC1 signaling. In vivo, GLS null T cells failed to drive Th17-inflammatory diseases, and Th1 cells had initially elevated function but exhausted over time. Transient GLS inhibition, however, led to increased Th1 and CTL T cell numbers. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.

摘要

活化的 T 细胞可分化为具有不同代谢程序的功能亚群。谷氨酰胺酶 (GLS) 将谷氨酰胺转化为谷氨酸,以支持三羧酸循环以及氧化还原和表观遗传反应。在这里,我们确定了 GLS 在 T 细胞激活和分化中的关键作用。虽然 GLS 缺乏会降低初始 T 细胞的激活和增殖,并损害 Th17 细胞的分化,但 GLS 的缺失也会增加 Tbet,从而促进 CD4 Th1 和 CD8 CTL 细胞的分化和效应功能。这与染色质可及性和基因表达的改变有关,包括 Th1 细胞中 PIK3IP1 的减少,这使它们对 IL-2 介导的 mTORC1 信号敏感。在体内,GLS 缺失的 T 细胞无法驱动 Th17 炎症性疾病,而 Th1 细胞最初具有较高的功能,但随着时间的推移会耗尽。然而,GLS 的短暂抑制会导致 Th1 和 CTL T 细胞数量的增加。因此,谷氨酰胺代谢在促进 Th17 方面具有独特的作用,但限制了 Th1 和 CTL 效应细胞的分化。

相似文献

1
Distinct Regulation of Th17 and Th1 Cell Differentiation by Glutaminase-Dependent Metabolism.
Cell. 2018 Dec 13;175(7):1780-1795.e19. doi: 10.1016/j.cell.2018.10.001. Epub 2018 Nov 1.
3
Effect of VIP on the balance between cytokines and master regulators of activated helper T cells.
Immunol Cell Biol. 2012 Feb;90(2):178-86. doi: 10.1038/icb.2011.23. Epub 2011 Mar 29.
4
Immunoproteasome subunit LMP7 deficiency and inhibition suppresses Th1 and Th17 but enhances regulatory T cell differentiation.
J Immunol. 2012 Oct 15;189(8):4182-93. doi: 10.4049/jimmunol.1201183. Epub 2012 Sep 14.
6
Involvement of CD26 in Differentiation and Functions of Th1 and Th17 Subpopulations of T Lymphocytes.
J Immunol Res. 2021 Jan 20;2021:6671410. doi: 10.1155/2021/6671410. eCollection 2021.
8
Essential Role for CD30-Transglutaminase 2 Axis in Memory Th1 and Th17 Cell Generation.
Front Immunol. 2020 Jul 21;11:1536. doi: 10.3389/fimmu.2020.01536. eCollection 2020.
9
LKB1-PTEN axis controls Th1 and Th17 cell differentiation via regulating mTORC1.
J Mol Med (Berl). 2021 Aug;99(8):1139-1150. doi: 10.1007/s00109-021-02090-2. Epub 2021 May 18.
10
Dopamine Receptor D3 Signaling on CD4+ T Cells Favors Th1- and Th17-Mediated Immunity.
J Immunol. 2016 May 15;196(10):4143-9. doi: 10.4049/jimmunol.1502420. Epub 2016 Apr 18.

引用本文的文献

1
Th17 cell pathogenicity in autoimmune disease.
Exp Mol Med. 2025 Sep 1. doi: 10.1038/s12276-025-01535-9.
2
Immunopathological syndromes: state of the art.
Front Med (Lausanne). 2025 Aug 13;12:1633624. doi: 10.3389/fmed.2025.1633624. eCollection 2025.
3
The regulatory role and mechanism of energy metabolism and immune response in head and neck cancer.
Genes Dis. 2025 Mar 19;12(6):101607. doi: 10.1016/j.gendis.2025.101607. eCollection 2025 Nov.
4
Pik3ip1/TrIP Regulation of PI3K Restricts CD8 T Cell Anti-Tumor Immunity.
bioRxiv. 2025 Jul 15:2025.07.10.664200. doi: 10.1101/2025.07.10.664200.
5
TGF-β Coordinates Alanine Synthesis and Import for Myofibroblast Differentiation in Pulmonary Fibrosis.
bioRxiv. 2025 Jul 24:2025.07.23.666333. doi: 10.1101/2025.07.23.666333.
6
Mitochondria reactive oxygen species signaling-dependent immune responses in macrophages and T cells.
Immunity. 2025 Aug 12;58(8):1904-1921. doi: 10.1016/j.immuni.2025.07.012. Epub 2025 Aug 4.
7
Metabolic checkpoints in immune cell reprogramming: rewiring immunometabolism for cancer therapy.
Mol Cancer. 2025 Aug 2;24(1):210. doi: 10.1186/s12943-025-02407-6.
8
"Molecular pigeon" network of lncRNA and miRNA: decoding metabolic reprogramming in patients with lung cancer.
Front Oncol. 2025 Jul 17;15:1578927. doi: 10.3389/fonc.2025.1578927. eCollection 2025.
9
OGG1 augments the transcriptional activation of to promote iTreg differentiation for IBD alleviation.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2424733122. doi: 10.1073/pnas.2424733122. Epub 2025 Jul 22.

本文引用的文献

1
A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3.
Cell Metab. 2018 Nov 6;28(5):721-736.e6. doi: 10.1016/j.cmet.2018.07.005. Epub 2018 Aug 16.
2
The impact of cellular metabolism on chromatin dynamics and epigenetics.
Nat Cell Biol. 2017 Nov;19(11):1298-1306. doi: 10.1038/ncb3629. Epub 2017 Oct 23.
3
A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product.
Cell Metab. 2017 Oct 3;26(4):648-659.e8. doi: 10.1016/j.cmet.2017.08.017. Epub 2017 Sep 14.
5
Metabolic control of T17 and induced T cell balance by an epigenetic mechanism.
Nature. 2017 Aug 10;548(7666):228-233. doi: 10.1038/nature23475. Epub 2017 Aug 2.
6
The Dawn of the Age of Amino Acid Sensors for the mTORC1 Pathway.
Cell Metab. 2017 Aug 1;26(2):301-309. doi: 10.1016/j.cmet.2017.07.001.
7
Glutaminase 1 plays a key role in the cell growth of fibroblast-like synoviocytes in rheumatoid arthritis.
Arthritis Res Ther. 2017 Apr 11;19(1):76. doi: 10.1186/s13075-017-1283-3.
8
9
Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism.
Science. 2016 Oct 28;354(6311):481-484. doi: 10.1126/science.aaf6284. Epub 2016 Sep 29.
10
Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.
Curr Protoc Bioinformatics. 2016 Sep 7;55:14.10.1-14.10.91. doi: 10.1002/cpbi.11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验