M. Pilz, K. Staats, R. Windhager, J. Holinka, Department for Orthopedic and Traumatology, Medical University of Vienna, Waehringer Guertel, Vienna, Austria S. Tobudic, Department of Internal Medicine I, Division for Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria O. Assadian, E. Presterl, Department for Hospital Epidemiology and Infection Control, Medical University of Vienna, Vienna, Austria.
Clin Orthop Relat Res. 2019 Feb;477(2):461-466. doi: 10.1097/CORR.0000000000000568.
One of the most commonly identified pathogens responsible for orthopaedic implant infection is Staphylococcus epidermidis, which can form biofilms on surfaces. Currently, orthopaedic implants made of various surface materials are available, each with features influencing osseointegration, biocompatibility, and adherence of bacteria to the surface, which is the first step in biofilm formation. The aim of this experimental study was to investigate the effect of a high tribologic-resistant 2.5-µm zirconium nitride top coat on an antiallergic multilayer ceramic-covered cobalt-chromium-molybdenum surface on the formation of S. epidermidis biofilm compared with other commonly used smooth and rough orthopaedic implant surface materials.
QUESTIONS/PURPOSES: (1) When evaluating the surfaces of a cobalt-chromium-molybdenum (CoCrMo) alloy with a zirconium (Zr) nitride coating, a CoCrMo alloy without a coating, titanium alloy, a titanium alloy with a corundum-blasted rough surface, and stainless steel with a corundum-blasted rough surface, does a Zr coating reduce the number of colony-forming units of S. epidermidis in an in vitro setting? (2) Is there quantitatively less biofilm surface area on Zr-coated surfaces than on the other surfaces tested in this in vitro model?
To determine bacterial adhesion, five different experimental implant surface discs were incubated separately with one of 31 different S. epidermidis strains each and subsequently sonicated. Twenty test strains were obtained from orthopaedic patients undergoing emergency hip prosthesis surgeries or revision of implant infection and 10 further strains were obtained from the skin of healthy individuals. Additionally, one reference strain, S. epidermidis DSM 3269, was tested. After serial dilutions, the number of bacteria was counted and expressed as colony-forming units (CFUs)/mL. For biofilm detection, discs were stained with 0.1% Safranin-O for 15 minutes, photographed, and analyzed with computer imaging software.
The lowest bacterial count was found in the CoCrMo + Zr surface disc (6.6 x 10 CFU/mL ± 4.6 x 10 SD) followed by the CoCrMo surface (1.1 x 10 CFU/mL ± 1.9 x 10 SD), the titanium surface (1.36 x 10 CFU/mL ± 1.8 x 10 SD), the rough stainless steel surface (2.65 x 10 CFU/mL ± 3.8 x 10 SD), and the rough titanium surface (2.1 x 10 CFU/mL ± 3.0 x 10 SD). The mean CFU count was lower for CoCrMo + Zr discs compared with the rough stainless steel surface (mean difference: 2.0 x 10, p = 0.021), the rough titanium alloy surface (mean difference: 1.4 x 10, p = 0.002), and the smooth titanium surface (mean difference: 7.0 x 10, p = 0.016). The results of biofilm formation quantification show that the mean covered area of the surface of the CoCrMo + Zr discs was 19% (± 16 SD), which was lower than CoCrMo surfaces (35% ± 23 SD), titanium alloy surface (46% ± 20 SD), rough titanium alloy surface (66% ± 23 SD), and rough stainless steel surface (58% ± 18 SD).
These results demonstrate that a multilayer, ceramic-covered, CoCrMo surface with a 2.5-µm zirconium nitride top coat showed less S. epidermidis biofilm formation compared with other surface materials used for orthopaedic implants.
CoCrMo with a 2.5-µm zirconium nitride top coat seems to be a promising surface modification technology able to reduce bacterial attachment on the surface of an implant and, hence, may further prevent implant infection with S. epidermidis biofilm formation.
最常被识别为导致骨科植入物感染的病原体之一是表皮葡萄球菌,它可以在表面形成生物膜。目前,有各种不同表面材料制成的骨科植入物,每种材料都具有影响骨整合、生物相容性和细菌对表面附着的特性,这是生物膜形成的第一步。本实验研究的目的是研究高摩擦阻力的 2.5μm 氮化锆涂层对抗过敏多层陶瓷覆盖钴铬钼表面对表皮葡萄球菌生物膜形成的影响,与其他常用的光滑和粗糙骨科植入物表面材料相比。
问题/目的:(1) 在评估带有氮化锆 (Zr) 涂层的钴铬钼 (CoCrMo) 合金表面时,与没有涂层的 CoCrMo 合金、钛合金、喷丸处理的粗糙钛合金表面和喷丸处理的粗糙不锈钢表面相比,Zr 涂层是否会减少体外环境中表皮葡萄球菌的菌落形成单位数量?(2) 在这个体外模型中,Zr 涂层表面的生物膜表面积是否比其他测试表面的定量少?
为了确定细菌粘附,将五个不同的实验植入物表面圆盘分别与 31 个不同的表皮葡萄球菌菌株之一孵育,然后进行超声处理。20 株测试菌株来自接受急诊髋关节假体手术或植入物感染翻修的骨科患者,另外 10 株来自健康个体的皮肤。此外,还测试了一个参考菌株表皮葡萄球菌 DSM 3269。经过连续稀释后,计算细菌数量并表示为菌落形成单位 (CFU)/mL。为了检测生物膜,用 0.1% Safranin-O 对圆盘进行染色 15 分钟,拍照并用计算机成像软件进行分析。
在 CoCrMo + Zr 表面圆盘上发现的细菌计数最低(6.6 x 10 CFU/mL ± 4.6 x 10 SD),其次是 CoCrMo 表面(1.1 x 10 CFU/mL ± 1.9 x 10 SD)、钛表面(1.36 x 10 CFU/mL ± 1.8 x 10 SD)、粗糙不锈钢表面(2.65 x 10 CFU/mL ± 3.8 x 10 SD)和粗糙钛表面(2.1 x 10 CFU/mL ± 3.0 x 10 SD)。与粗糙不锈钢表面(平均差异:2.0 x 10,p = 0.021)、粗糙钛合金表面(平均差异:1.4 x 10,p = 0.002)和光滑钛表面(平均差异:7.0 x 10,p = 0.016)相比,CoCrMo + Zr 圆盘的 CFU 计数平均值较低。生物膜形成定量结果表明,CoCrMo + Zr 圆盘的表面覆盖面积平均值为 19%(± 16 SD),低于 CoCrMo 表面(35% ± 23 SD)、钛合金表面(46% ± 20 SD)、粗糙钛合金表面(66% ± 23 SD)和粗糙不锈钢表面(58% ± 18 SD)。
这些结果表明,多层、陶瓷覆盖的 CoCrMo 表面带有 2.5μm 氮化锆涂层,与其他用于骨科植入物的表面材料相比,表皮葡萄球菌生物膜形成较少。
带有 2.5μm 氮化锆涂层的 CoCrMo 似乎是一种有前途的表面改性技术,能够减少植入物表面的细菌附着,从而进一步防止表皮葡萄球菌生物膜形成引起的植入物感染。