Suppr超能文献

氮化锆涂层减少骨科植入物表面表皮葡萄球菌生物膜的形成:一项体外研究。

Zirconium Nitride Coating Reduced Staphylococcus epidermidis Biofilm Formation on Orthopaedic Implant Surfaces: An In Vitro Study.

机构信息

M. Pilz, K. Staats, R. Windhager, J. Holinka, Department for Orthopedic and Traumatology, Medical University of Vienna, Waehringer Guertel, Vienna, Austria S. Tobudic, Department of Internal Medicine I, Division for Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria O. Assadian, E. Presterl, Department for Hospital Epidemiology and Infection Control, Medical University of Vienna, Vienna, Austria.

出版信息

Clin Orthop Relat Res. 2019 Feb;477(2):461-466. doi: 10.1097/CORR.0000000000000568.

Abstract

BACKGROUND

One of the most commonly identified pathogens responsible for orthopaedic implant infection is Staphylococcus epidermidis, which can form biofilms on surfaces. Currently, orthopaedic implants made of various surface materials are available, each with features influencing osseointegration, biocompatibility, and adherence of bacteria to the surface, which is the first step in biofilm formation. The aim of this experimental study was to investigate the effect of a high tribologic-resistant 2.5-µm zirconium nitride top coat on an antiallergic multilayer ceramic-covered cobalt-chromium-molybdenum surface on the formation of S. epidermidis biofilm compared with other commonly used smooth and rough orthopaedic implant surface materials.

QUESTIONS/PURPOSES: (1) When evaluating the surfaces of a cobalt-chromium-molybdenum (CoCrMo) alloy with a zirconium (Zr) nitride coating, a CoCrMo alloy without a coating, titanium alloy, a titanium alloy with a corundum-blasted rough surface, and stainless steel with a corundum-blasted rough surface, does a Zr coating reduce the number of colony-forming units of S. epidermidis in an in vitro setting? (2) Is there quantitatively less biofilm surface area on Zr-coated surfaces than on the other surfaces tested in this in vitro model?

METHODS

To determine bacterial adhesion, five different experimental implant surface discs were incubated separately with one of 31 different S. epidermidis strains each and subsequently sonicated. Twenty test strains were obtained from orthopaedic patients undergoing emergency hip prosthesis surgeries or revision of implant infection and 10 further strains were obtained from the skin of healthy individuals. Additionally, one reference strain, S. epidermidis DSM 3269, was tested. After serial dilutions, the number of bacteria was counted and expressed as colony-forming units (CFUs)/mL. For biofilm detection, discs were stained with 0.1% Safranin-O for 15 minutes, photographed, and analyzed with computer imaging software.

RESULTS

The lowest bacterial count was found in the CoCrMo + Zr surface disc (6.6 x 10 CFU/mL ± 4.6 x 10 SD) followed by the CoCrMo surface (1.1 x 10 CFU/mL ± 1.9 x 10 SD), the titanium surface (1.36 x 10 CFU/mL ± 1.8 x 10 SD), the rough stainless steel surface (2.65 x 10 CFU/mL ± 3.8 x 10 SD), and the rough titanium surface (2.1 x 10 CFU/mL ± 3.0 x 10 SD). The mean CFU count was lower for CoCrMo + Zr discs compared with the rough stainless steel surface (mean difference: 2.0 x 10, p = 0.021), the rough titanium alloy surface (mean difference: 1.4 x 10, p = 0.002), and the smooth titanium surface (mean difference: 7.0 x 10, p = 0.016). The results of biofilm formation quantification show that the mean covered area of the surface of the CoCrMo + Zr discs was 19% (± 16 SD), which was lower than CoCrMo surfaces (35% ± 23 SD), titanium alloy surface (46% ± 20 SD), rough titanium alloy surface (66% ± 23 SD), and rough stainless steel surface (58% ± 18 SD).

CONCLUSIONS

These results demonstrate that a multilayer, ceramic-covered, CoCrMo surface with a 2.5-µm zirconium nitride top coat showed less S. epidermidis biofilm formation compared with other surface materials used for orthopaedic implants.

CLINICAL RELEVANCE

CoCrMo with a 2.5-µm zirconium nitride top coat seems to be a promising surface modification technology able to reduce bacterial attachment on the surface of an implant and, hence, may further prevent implant infection with S. epidermidis biofilm formation.

摘要

背景

最常被识别为导致骨科植入物感染的病原体之一是表皮葡萄球菌,它可以在表面形成生物膜。目前,有各种不同表面材料制成的骨科植入物,每种材料都具有影响骨整合、生物相容性和细菌对表面附着的特性,这是生物膜形成的第一步。本实验研究的目的是研究高摩擦阻力的 2.5μm 氮化锆涂层对抗过敏多层陶瓷覆盖钴铬钼表面对表皮葡萄球菌生物膜形成的影响,与其他常用的光滑和粗糙骨科植入物表面材料相比。

问题/目的:(1) 在评估带有氮化锆 (Zr) 涂层的钴铬钼 (CoCrMo) 合金表面时,与没有涂层的 CoCrMo 合金、钛合金、喷丸处理的粗糙钛合金表面和喷丸处理的粗糙不锈钢表面相比,Zr 涂层是否会减少体外环境中表皮葡萄球菌的菌落形成单位数量?(2) 在这个体外模型中,Zr 涂层表面的生物膜表面积是否比其他测试表面的定量少?

方法

为了确定细菌粘附,将五个不同的实验植入物表面圆盘分别与 31 个不同的表皮葡萄球菌菌株之一孵育,然后进行超声处理。20 株测试菌株来自接受急诊髋关节假体手术或植入物感染翻修的骨科患者,另外 10 株来自健康个体的皮肤。此外,还测试了一个参考菌株表皮葡萄球菌 DSM 3269。经过连续稀释后,计算细菌数量并表示为菌落形成单位 (CFU)/mL。为了检测生物膜,用 0.1% Safranin-O 对圆盘进行染色 15 分钟,拍照并用计算机成像软件进行分析。

结果

在 CoCrMo + Zr 表面圆盘上发现的细菌计数最低(6.6 x 10 CFU/mL ± 4.6 x 10 SD),其次是 CoCrMo 表面(1.1 x 10 CFU/mL ± 1.9 x 10 SD)、钛表面(1.36 x 10 CFU/mL ± 1.8 x 10 SD)、粗糙不锈钢表面(2.65 x 10 CFU/mL ± 3.8 x 10 SD)和粗糙钛表面(2.1 x 10 CFU/mL ± 3.0 x 10 SD)。与粗糙不锈钢表面(平均差异:2.0 x 10,p = 0.021)、粗糙钛合金表面(平均差异:1.4 x 10,p = 0.002)和光滑钛表面(平均差异:7.0 x 10,p = 0.016)相比,CoCrMo + Zr 圆盘的 CFU 计数平均值较低。生物膜形成定量结果表明,CoCrMo + Zr 圆盘的表面覆盖面积平均值为 19%(± 16 SD),低于 CoCrMo 表面(35% ± 23 SD)、钛合金表面(46% ± 20 SD)、粗糙钛合金表面(66% ± 23 SD)和粗糙不锈钢表面(58% ± 18 SD)。

结论

这些结果表明,多层、陶瓷覆盖的 CoCrMo 表面带有 2.5μm 氮化锆涂层,与其他用于骨科植入物的表面材料相比,表皮葡萄球菌生物膜形成较少。

临床相关性

带有 2.5μm 氮化锆涂层的 CoCrMo 似乎是一种有前途的表面改性技术,能够减少植入物表面的细菌附着,从而进一步防止表皮葡萄球菌生物膜形成引起的植入物感染。

相似文献

3
Adherence and biofilm formation of Staphylococcus epidermidis and Mycobacterium tuberculosis on various spinal implants.
Spine (Phila Pa 1976). 2005 Jan 1;30(1):38-43. doi: 10.1097/01.brs.0000147801.63304.8a.
5
Effect of Cobalt-Chromium-Molybdenum Implant Surface Modifications on Biofilm Development of and .
Front Cell Infect Microbiol. 2022 Mar 1;12:837124. doi: 10.3389/fcimb.2022.837124. eCollection 2022.
6
Antimicrobial coating agents: can biofilm formation on a breast implant be prevented?
J Plast Reconstr Aesthet Surg. 2009 May;62(5):610-7. doi: 10.1016/j.bjps.2007.09.044. Epub 2008 Mar 24.
7
Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study.
PLoS One. 2014 Oct 9;9(10):e107588. doi: 10.1371/journal.pone.0107588. eCollection 2014.
8
Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating.
Antimicrob Agents Chemother. 2012 Nov;56(11):5923-37. doi: 10.1128/AAC.01739-12. Epub 2012 Sep 10.
9
Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials.
J Orthop Trauma. 2006 Jul;20(7):476-84. doi: 10.1097/00005131-200608000-00005.

引用本文的文献

2
Simulation of a Radio-Frequency Wave Based Bacterial Biofilm Detection Method in Dairy Processing Facilities.
Appl Sci (Basel). 2024 Jun 1;14(11). doi: 10.3390/app14114342. Epub 2024 May 21.
5
Biological Characteristics of Polyurethane-Based Bone-Replacement Materials.
Polymers (Basel). 2023 Feb 7;15(4):831. doi: 10.3390/polym15040831.
6
Green synthesis and characterization of zirconium nanoparticlefor dental implant applications.
Heliyon. 2022 Dec 30;9(1):e12711. doi: 10.1016/j.heliyon.2022.e12711. eCollection 2023 Jan.
7
Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections .
ACS Infect Dis. 2021 Dec 10;7(12):3125-3160. doi: 10.1021/acsinfecdis.1c00465. Epub 2021 Nov 11.
8
Coating CoCrMo Alloy with Graphene Oxide and ε-Poly-L-Lysine Enhances Its Antibacterial and Antibiofilm Properties.
Int J Nanomedicine. 2021 Oct 27;16:7249-7268. doi: 10.2147/IJN.S321800. eCollection 2021.
10
Prevention of infection in primary THA and TKA.
EFORT Open Rev. 2020 Oct 26;5(10):604-613. doi: 10.1302/2058-5241.5.200004. eCollection 2020 Oct.

本文引用的文献

1
Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion.
Colloids Surf B Biointerfaces. 2016 Oct 1;146:459-67. doi: 10.1016/j.colsurfb.2016.06.039. Epub 2016 Jun 23.
2
Quantitative in vivo biocompatibility of new ultralow-nickel cobalt-chromium-molybdenum alloys.
J Orthop Res. 2016 Sep;34(9):1505-13. doi: 10.1002/jor.23150. Epub 2016 Jan 19.
3
Early staphylococcal biofilm formation on solid orthopaedic implant materials: in vitro study.
PLoS One. 2014 Oct 9;9(10):e107588. doi: 10.1371/journal.pone.0107588. eCollection 2014.
4
Definition of periprosthetic joint infection.
J Arthroplasty. 2014 Jul;29(7):1331. doi: 10.1016/j.arth.2014.03.009. Epub 2014 Mar 21.
7
Cost analysis of debridement and retention for management of prosthetic joint infection.
Clin Microbiol Infect. 2013 Feb;19(2):181-6. doi: 10.1111/j.1469-0691.2011.03758.x. Epub 2012 Jan 20.
8
New approaches for treating staphylococcal biofilm infections.
Ann N Y Acad Sci. 2011 Dec;1241:104-21. doi: 10.1111/j.1749-6632.2011.06281.x.
9
Infection in total hip replacement: meta-analysis.
Int Orthop. 2011 Feb;35(2):253-60. doi: 10.1007/s00264-010-1144-z. Epub 2010 Nov 18.
10
Differential response of Staphylococci and osteoblasts to varying titanium surface roughness.
Biomaterials. 2011 Feb;32(4):951-60. doi: 10.1016/j.biomaterials.2010.10.001. Epub 2010 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验