Suppr超能文献

剪接因子 SRSF1 通过致癌性剪接转换 MYO1B 促进神经胶质瘤发生。

Splicing factor SRSF1 promotes gliomagenesis via oncogenic splice-switching of MYO1B.

机构信息

Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.

Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin, China.

出版信息

J Clin Invest. 2019 Feb 1;129(2):676-693. doi: 10.1172/JCI120279. Epub 2019 Jan 14.

Abstract

Abnormal alternative splicing (AS) caused by alterations to splicing factors contributes to tumor progression. Serine/arginine splicing factor 1 (SRSF1) has emerged as a key oncodriver in numerous solid tumors, leaving its roles and mechanisms largely obscure in glioma. Here, we demonstrate that SRSF1 is increased in glioma tissues and cell lines. Moreover, its expression was correlated positively with tumor grade and Ki-67 index, but inversely with patient survival. Using RNA-Seq, we comprehensively screened and identified multiple SRSF1-affected AS events. Motif analysis revealed a position-dependent modulation of AS by SRSF1 in glioma. Functionally, we verified that SRSF1 promoted cell proliferation, survival, and invasion by specifically switching the AS of the myosin IB (MYO1B) gene and facilitating the expression of the oncogenic and membrane-localized isoform, MYO1B-fl. Strikingly, MYO1B splicing was dysregulated in parallel with SRSF1 expression in gliomas and predicted the poor prognosis of the patients. Further investigation revealed that SRSF1-guided AS of the MYO1B gene increased the tumorigenic potential of glioma cells through the PDK1/AKT and PAK/LIMK pathways. Taken together, we identify SRSF1 as an important oncodriver that integrates AS control of MYO1B into promotion of gliomagenesis and represents a potential prognostic biomarker and target for glioma therapy.

摘要

异常的剪接(AS)是由剪接因子的改变引起的,这有助于肿瘤的进展。丝氨酸/精氨酸剪接因子 1(SRSF1)已成为许多实体瘤中的关键致癌驱动因子,但其在神经胶质瘤中的作用和机制在很大程度上仍不清楚。在这里,我们证明 SRSF1 在神经胶质瘤组织和细胞系中增加。此外,其表达与肿瘤分级和 Ki-67 指数呈正相关,但与患者生存呈负相关。通过 RNA-Seq,我们全面筛选和鉴定了多个 SRSF1 影响的 AS 事件。基序分析显示 SRSF1 在神经胶质瘤中对 AS 具有位置依赖性的调节作用。功能上,我们验证了 SRSF1 通过特异性切换肌球蛋白 IB(MYO1B)基因的 AS 并促进致癌和膜定位同工型 MYO1B-fl 的表达,从而促进细胞增殖、存活和侵袭。引人注目的是,MYO1B 剪接与神经胶质瘤中 SRSF1 的表达平行失调,并预测了患者的不良预后。进一步的研究表明,SRSF1 指导的 MYO1B 基因的 AS 通过 PDK1/AKT 和 PAK/LIMK 通路增加了神经胶质瘤细胞的致瘤潜能。总之,我们确定 SRSF1 是一种重要的致癌驱动因子,它将 MYO1B 的 AS 控制整合到促进神经胶质瘤发生中,并代表了神经胶质瘤治疗的潜在预后生物标志物和靶标。

相似文献

1
Splicing factor SRSF1 promotes gliomagenesis via oncogenic splice-switching of MYO1B.
J Clin Invest. 2019 Feb 1;129(2):676-693. doi: 10.1172/JCI120279. Epub 2019 Jan 14.
2
Eucalyptal A inhibits glioma by rectifying oncogenic splicing of MYO1B mRNA via suppressing SRSF1 expression.
Eur J Pharmacol. 2021 Jan 5;890:173669. doi: 10.1016/j.ejphar.2020.173669. Epub 2020 Oct 22.
3
The RNA-binding protein SRSF1 is a key cell cycle regulator via stabilizing NEAT1 in glioma.
Int J Biochem Cell Biol. 2019 Aug;113:75-86. doi: 10.1016/j.biocel.2019.06.003. Epub 2019 Jun 11.
4
SRSF3-Regulated RNA Alternative Splicing Promotes Glioblastoma Tumorigenicity by Affecting Multiple Cellular Processes.
Cancer Res. 2019 Oct 15;79(20):5288-5301. doi: 10.1158/0008-5472.CAN-19-1504. Epub 2019 Aug 28.
5
Splicing factor SRSF1 promotes breast cancer progression via oncogenic splice switching of PTPMT1.
J Exp Clin Cancer Res. 2021 May 15;40(1):171. doi: 10.1186/s13046-021-01978-8.
6
SRSF1 Prevents DNA Damage and Promotes Tumorigenesis through Regulation of DBF4B Pre-mRNA Splicing.
Cell Rep. 2017 Dec 19;21(12):3406-3413. doi: 10.1016/j.celrep.2017.11.091.
8
SRSF1-Regulated Alternative Splicing in Breast Cancer.
Mol Cell. 2015 Oct 1;60(1):105-17. doi: 10.1016/j.molcel.2015.09.005.
10
miR-139 Functions as An Antioncomir to Repress Glioma Progression Through Targeting IGF-1 R, AMY-1, and PGC-1β.
Technol Cancer Res Treat. 2017 Aug;16(4):497-511. doi: 10.1177/1533034616630866. Epub 2016 Feb 10.

引用本文的文献

1
The Roles of RNA-Binding Proteins in Vasculogenic Mimicry Regulation in Glioblastoma.
Int J Mol Sci. 2025 Aug 18;26(16):7976. doi: 10.3390/ijms26167976.
4
MRAS: Master Regulator Analysis of Alternative Splicing.
Adv Sci (Weinh). 2025 Jun;12(21):e2414493. doi: 10.1002/advs.202414493. Epub 2025 May 5.
5
A Single-Cell Atlas of RNA Alternative Splicing in the Glioma-Immune Ecosystem.
bioRxiv. 2025 Mar 30:2025.03.26.645511. doi: 10.1101/2025.03.26.645511.
6
Cyperotundone promotes chemosensitivity of breast cancer via SRSF1.
Front Pharmacol. 2025 Mar 19;16:1510161. doi: 10.3389/fphar.2025.1510161. eCollection 2025.
7
SUGP1 loss is the sole driver of SF3B1 hotspot mutant missplicing in cancer.
bioRxiv. 2025 Feb 17:2025.02.17.638713. doi: 10.1101/2025.02.17.638713.
8
Targeting RNA splicing modulation: new perspectives for anticancer strategy?
J Exp Clin Cancer Res. 2025 Jan 30;44(1):32. doi: 10.1186/s13046-025-03279-w.
9
Alternative splicing of EZH2 regulated by SNRPB mediates hepatocellular carcinoma progression via BMP2 signaling pathway.
iScience. 2024 Dec 18;28(1):111626. doi: 10.1016/j.isci.2024.111626. eCollection 2025 Jan 17.
10

本文引用的文献

1
mTORC1 loss impairs epidermal adhesion via TGF-β/Rho kinase activation.
J Clin Invest. 2017 Nov 1;127(11):4001-4017. doi: 10.1172/JCI92893. Epub 2017 Sep 25.
2
miR-29a/b/c function as invasion suppressors for gliomas by targeting CDC42 and predict the prognosis of patients.
Br J Cancer. 2017 Sep 26;117(7):1036-1047. doi: 10.1038/bjc.2017.255. Epub 2017 Aug 8.
3
PI3K signaling in cancer: beyond AKT.
Curr Opin Cell Biol. 2017 Apr;45:62-71. doi: 10.1016/j.ceb.2017.02.007. Epub 2017 Mar 24.
5
SRSF2 Regulates Alternative Splicing to Drive Hepatocellular Carcinoma Development.
Cancer Res. 2017 Mar 1;77(5):1168-1178. doi: 10.1158/0008-5472.CAN-16-1919. Epub 2017 Jan 12.
6
Differences in Protein Expression between the U251 and U87 Cell Lines.
Turk Neurosurg. 2017;27(6):894-903. doi: 10.5137/1019-5149.JTN.17746-16.1.
8
The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.
Acta Neuropathol. 2016 Jun;131(6):803-20. doi: 10.1007/s00401-016-1545-1. Epub 2016 May 9.
9
Genomic Landscape Survey Identifies SRSF1 as a Key Oncodriver in Small Cell Lung Cancer.
PLoS Genet. 2016 Apr 19;12(4):e1005895. doi: 10.1371/journal.pgen.1005895. eCollection 2016 Apr.
10
Specific Myosins Control Actin Organization, Cell Morphology, and Migration in Prostate Cancer Cells.
Cell Rep. 2015 Dec 15;13(10):2118-25. doi: 10.1016/j.celrep.2015.11.012. Epub 2015 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验