Suppr超能文献

基于深度学习的驾驶员心理状态脑电图分类

EEG classification of driver mental states by deep learning.

作者信息

Zeng Hong, Yang Chen, Dai Guojun, Qin Feiwei, Zhang Jianhai, Kong Wanzeng

机构信息

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China.

出版信息

Cogn Neurodyn. 2018 Dec;12(6):597-606. doi: 10.1007/s11571-018-9496-y. Epub 2018 Jul 18.

Abstract

Driver fatigue is attracting more and more attention, as it is the main cause of traffic accidents, which bring great harm to society and families. This paper proposes to use deep convolutional neural networks, and deep residual learning, to predict the mental states of drivers from electroencephalography (EEG) signals. Accordingly we have developed two mental state classification models called EEG-Conv and EEG-Conv-R. Tested on intra- and inter-subject, our results show that both models outperform the traditional LSTM- and SVM-based classifiers. Our major findings include (1) Both EEG-Conv and EEG-Conv-R yield very good classification performance for mental state prediction; (2) EEG-Conv-R is more suitable for inter-subject mental state prediction; (3) EEG-Conv-R converges more quickly than EEG-Conv. In summary, our proposed classifiers have better predictive power and are promising for application in practical brain-computer interaction .

摘要

驾驶员疲劳越来越受到关注,因为它是交通事故的主要原因,会给社会和家庭带来巨大危害。本文提出使用深度卷积神经网络和深度残差学习,从脑电图(EEG)信号中预测驾驶员的精神状态。相应地,我们开发了两种精神状态分类模型,称为EEG-Conv和EEG-Conv-R。在受试者内和受试者间进行测试,我们的结果表明这两种模型都优于传统的基于LSTM和SVM的分类器。我们的主要发现包括:(1)EEG-Conv和EEG-Conv-R在精神状态预测方面都具有非常好的分类性能;(2)EEG-Conv-R更适合受试者间的精神状态预测;(3)EEG-Conv-R比EEG-Conv收敛得更快。总之,我们提出的分类器具有更好的预测能力,在实际脑机交互应用中很有前景。

相似文献

1
EEG classification of driver mental states by deep learning.
Cogn Neurodyn. 2018 Dec;12(6):597-606. doi: 10.1007/s11571-018-9496-y. Epub 2018 Jul 18.
2
A LightGBM-Based EEG Analysis Method for Driver Mental States Classification.
Comput Intell Neurosci. 2019 Sep 9;2019:3761203. doi: 10.1155/2019/3761203. eCollection 2019.
4
Real driving environment EEG-based detection of driving fatigue using the wavelet scattering network.
J Neurosci Methods. 2023 Dec 1;400:109983. doi: 10.1016/j.jneumeth.2023.109983. Epub 2023 Oct 13.
5
Convolutional Correlation Analysis for Enhancing the Performance of SSVEP-Based Brain-Computer Interface.
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2681-2690. doi: 10.1109/TNSRE.2020.3038718. Epub 2021 Jan 28.
6
An EEG-Based Transfer Learning Method for Cross-Subject Fatigue Mental State Prediction.
Sensors (Basel). 2021 Mar 29;21(7):2369. doi: 10.3390/s21072369.
7
Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI.
J Neural Eng. 2019 Apr;16(2):026007. doi: 10.1088/1741-2552/aaf3f6. Epub 2018 Nov 26.
8
Using long short term memory and convolutional neural networks for driver drowsiness detection.
Accid Anal Prev. 2021 Jun;156:106107. doi: 10.1016/j.aap.2021.106107. Epub 2021 Apr 10.
10
Deep learning for electroencephalogram (EEG) classification tasks: a review.
J Neural Eng. 2019 Jun;16(3):031001. doi: 10.1088/1741-2552/ab0ab5. Epub 2019 Feb 26.

引用本文的文献

2
CubicPat: Investigations on the Mental Performance and Stress Detection Using EEG Signals.
Diagnostics (Basel). 2025 Feb 4;15(3):363. doi: 10.3390/diagnostics15030363.
3
Decoding of movement-related cortical potentials at different speeds.
Cogn Neurodyn. 2024 Dec;18(6):3859-3872. doi: 10.1007/s11571-024-10164-3. Epub 2024 Sep 1.
4
An improved CapsNet based on data augmentation for driver vigilance estimation with forehead single-channel EEG.
Cogn Neurodyn. 2024 Oct;18(5):2535-2550. doi: 10.1007/s11571-024-10105-0. Epub 2024 Apr 10.
5
Cognitive workload estimation using physiological measures: a review.
Cogn Neurodyn. 2024 Aug;18(4):1445-1465. doi: 10.1007/s11571-023-10051-3. Epub 2023 Dec 26.
6
Research on Fatigue Driving Detection Technology Based on CA-ACGAN.
Brain Sci. 2024 Apr 27;14(5):436. doi: 10.3390/brainsci14050436.
7
Driving fatigue detection based on brain source activity and ARMA model.
Med Biol Eng Comput. 2024 Apr;62(4):1017-1030. doi: 10.1007/s11517-023-02983-z. Epub 2023 Dec 20.
8
The applied principles of EEG analysis methods in neuroscience and clinical neurology.
Mil Med Res. 2023 Dec 19;10(1):67. doi: 10.1186/s40779-023-00502-7.
9
Assigning channel weights using an attention mechanism: an EEG interpolation algorithm.
Front Neurosci. 2023 Sep 21;17:1251677. doi: 10.3389/fnins.2023.1251677. eCollection 2023.

本文引用的文献

1
EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
J Neural Eng. 2018 Oct;15(5):056013. doi: 10.1088/1741-2552/aace8c. Epub 2018 Jun 22.
2
Fine-grained leukocyte classification with deep residual learning for microscopic images.
Comput Methods Programs Biomed. 2018 Aug;162:243-252. doi: 10.1016/j.cmpb.2018.05.024. Epub 2018 May 22.
3
A Novel Nonlinear Dynamic Method for Stroke Rehabilitation Effect Evaluation Using EEG.
IEEE Trans Neural Syst Rehabil Eng. 2017 Dec;25(12):2488-2497. doi: 10.1109/TNSRE.2017.2744664. Epub 2017 Aug 25.
4
Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals.
Front Comput Neurosci. 2017 Aug 3;11:72. doi: 10.3389/fncom.2017.00072. eCollection 2017.
5
Deep learning with convolutional neural networks for EEG decoding and visualization.
Hum Brain Mapp. 2017 Nov;38(11):5391-5420. doi: 10.1002/hbm.23730. Epub 2017 Aug 7.
10
Neural network modelling of the influence of channelopathies on reflex visual attention.
Cogn Neurodyn. 2016 Feb;10(1):49-72. doi: 10.1007/s11571-015-9365-x. Epub 2015 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验