Zeng Hong, Yang Chen, Dai Guojun, Qin Feiwei, Zhang Jianhai, Kong Wanzeng
School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China.
Cogn Neurodyn. 2018 Dec;12(6):597-606. doi: 10.1007/s11571-018-9496-y. Epub 2018 Jul 18.
Driver fatigue is attracting more and more attention, as it is the main cause of traffic accidents, which bring great harm to society and families. This paper proposes to use deep convolutional neural networks, and deep residual learning, to predict the mental states of drivers from electroencephalography (EEG) signals. Accordingly we have developed two mental state classification models called EEG-Conv and EEG-Conv-R. Tested on intra- and inter-subject, our results show that both models outperform the traditional LSTM- and SVM-based classifiers. Our major findings include (1) Both EEG-Conv and EEG-Conv-R yield very good classification performance for mental state prediction; (2) EEG-Conv-R is more suitable for inter-subject mental state prediction; (3) EEG-Conv-R converges more quickly than EEG-Conv. In summary, our proposed classifiers have better predictive power and are promising for application in practical brain-computer interaction .
驾驶员疲劳越来越受到关注,因为它是交通事故的主要原因,会给社会和家庭带来巨大危害。本文提出使用深度卷积神经网络和深度残差学习,从脑电图(EEG)信号中预测驾驶员的精神状态。相应地,我们开发了两种精神状态分类模型,称为EEG-Conv和EEG-Conv-R。在受试者内和受试者间进行测试,我们的结果表明这两种模型都优于传统的基于LSTM和SVM的分类器。我们的主要发现包括:(1)EEG-Conv和EEG-Conv-R在精神状态预测方面都具有非常好的分类性能;(2)EEG-Conv-R更适合受试者间的精神状态预测;(3)EEG-Conv-R比EEG-Conv收敛得更快。总之,我们提出的分类器具有更好的预测能力,在实际脑机交互应用中很有前景。