Suppr超能文献

空间和时间上抑制 FGFR2b 配体揭示了小鼠内耳形态发生中的持续需求和新靶点。

Spatial and temporal inhibition of FGFR2b ligands reveals continuous requirements and novel targets in mouse inner ear morphogenesis.

机构信息

Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA.

Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA

出版信息

Development. 2018 Dec 18;145(24):dev170142. doi: 10.1242/dev.170142.

Abstract

Morphogenesis of the inner ear epithelium requires coordinated deployment of several signaling pathways, and disruptions cause abnormalities of hearing and/or balance. The FGFR2b ligands FGF3 and FGF10 are expressed throughout otic development and are required individually for normal morphogenesis, but their prior and redundant roles in otic placode induction complicates investigation of subsequent combinatorial functions in morphogenesis. To interrogate these roles and identify new effectors of FGF3 and FGF10 signaling at the earliest stages of otic morphogenesis, we used conditional gene ablation after otic placode induction, and temporal inhibition of signaling with a secreted, dominant-negative FGFR2b ectodomain. We show that both ligands are required continuously after otocyst formation for maintenance of otic neuroblasts and for patterning and proliferation of the epithelium, leading to normal morphogenesis of both the cochlear and vestibular domains. Furthermore, the first genome-wide identification of proximal targets of FGFR2b signaling in the early otocyst reveals novel candidate genes for inner ear development and function.

摘要

内耳上皮的形态发生需要几个信号通路的协调部署,而这些通路的破坏会导致听力和/或平衡异常。FGFR2b 配体 FGF3 和 FGF10 在整个耳发育过程中表达,并分别需要正常的形态发生,但它们在耳基板诱导中的先前和冗余作用使对随后在形态发生中的组合功能的研究变得复杂。为了研究这些作用,并在耳形态发生的最早阶段鉴定 FGF3 和 FGF10 信号的新效应物,我们在耳基板诱导后使用条件基因消融,并使用分泌的显性负 FGFR2b 胞外结构域进行信号的时间抑制。我们表明,两种配体在耳泡形成后都需要连续存在,以维持耳神经母细胞的存活,并使上皮的模式和增殖,从而使耳蜗和前庭区域正常形态发生。此外,FGFR2b 信号在早期耳泡中的近端靶标的首次全基因组鉴定揭示了内耳发育和功能的新候选基因。

相似文献

2
Differential requirements for FGF3, FGF8 and FGF10 during inner ear development.
Dev Biol. 2007 Aug 15;308(2):379-91. doi: 10.1016/j.ydbio.2007.05.033. Epub 2007 Jun 2.
4
FGF/FGFR-2(IIIb) signaling is essential for inner ear morphogenesis.
J Neurosci. 2000 Aug 15;20(16):6125-34. doi: 10.1523/JNEUROSCI.20-16-06125.2000.
5
Fgf10 is required for specification of non-sensory regions of the cochlear epithelium.
Dev Biol. 2015 Apr 1;400(1):59-71. doi: 10.1016/j.ydbio.2015.01.015. Epub 2015 Jan 24.
6
Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium.
Development. 2007 Oct;134(20):3615-25. doi: 10.1242/dev.006627. Epub 2007 Sep 12.
7
Eya1 regulates the growth of otic epithelium and interacts with Pax2 during the development of all sensory areas in the inner ear.
Dev Biol. 2006 Oct 15;298(2):430-41. doi: 10.1016/j.ydbio.2006.06.049. Epub 2006 Jul 7.
8
Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning.
Mech Dev. 2002 Nov;119(1):91-108. doi: 10.1016/s0925-4773(02)00343-x.
9
The role of Six1 in mammalian auditory system development.
Development. 2003 Sep;130(17):3989-4000. doi: 10.1242/dev.00628.
10

引用本文的文献

1
prdm1a drives a fate switch between hair cells of different mechanosensory organs.
Nat Commun. 2025 Aug 18;16(1):7662. doi: 10.1038/s41467-025-62942-0.
2
drives a fate switch between hair cells of different mechanosensory organs.
bioRxiv. 2025 Jun 3:2025.06.01.657251. doi: 10.1101/2025.06.01.657251.
3
Shh agonist enhances maturation in homotypic Lgr5-positive inner ear organoids.
Theranostics. 2025 Apr 13;15(12):5543-5565. doi: 10.7150/thno.107345. eCollection 2025.
5
Pax2a, Sp5a and Sp5l act downstream of Fgf and Wnt to coordinate sensory-neural patterning in the inner ear.
Dev Biol. 2022 Dec;492:139-153. doi: 10.1016/j.ydbio.2022.10.004. Epub 2022 Oct 14.
6
Critical roles of FGF, RA, and WNT signalling in the development of the human otic placode and subsequent lineages in a dish.
Regen Ther. 2022 May 16;20:165-186. doi: 10.1016/j.reth.2022.04.008. eCollection 2022 Jun.
7
Age-Related Hearing Loss: Sensory and Neural Etiology and Their Interdependence.
Front Aging Neurosci. 2022 Feb 17;14:814528. doi: 10.3389/fnagi.2022.814528. eCollection 2022.
8
New developments in the biology of fibroblast growth factors.
WIREs Mech Dis. 2022 Jul;14(4):e1549. doi: 10.1002/wsbm.1549. Epub 2022 Feb 9.
10
Stalling interkinetic nuclear migration in curved pseudostratified epithelium of developing cochlea.
R Soc Open Sci. 2021 Dec 8;8(12):211024. doi: 10.1098/rsos.211024. eCollection 2021 Dec.

本文引用的文献

1
Genetic landscape of auditory dysfunction.
Hum Mol Genet. 2018 Aug 1;27(R2):R130-R135. doi: 10.1093/hmg/ddy158.
3
Hearing crosstalk: the molecular conversation orchestrating inner ear dorsoventral patterning.
Wiley Interdiscip Rev Dev Biol. 2018 Jan;7(1). doi: 10.1002/wdev.302. Epub 2017 Oct 11.
4
Classification and Current Management of Inner Ear Malformations.
Balkan Med J. 2017 Sep 29;34(5):397-411. doi: 10.4274/balkanmedj.2017.0367. Epub 2017 Aug 25.
5
and act in concert to modulate the fate of neurosensory cells of the mouse otic vesicle.
Biol Open. 2017 Oct 15;6(10):1472-1482. doi: 10.1242/bio.027359.
6
A gene network regulated by FGF signalling during ear development.
Sci Rep. 2017 Jul 21;7(1):6162. doi: 10.1038/s41598-017-05472-0.
7
Clinical outcomes following cochlear implantation in children with inner ear anomalies.
Int J Pediatr Otorhinolaryngol. 2017 Feb;93:1-6. doi: 10.1016/j.ijporl.2016.12.001. Epub 2016 Dec 5.
8
Changing shape and shaping change: Inducing the inner ear.
Semin Cell Dev Biol. 2017 May;65:39-46. doi: 10.1016/j.semcdb.2016.10.006. Epub 2016 Oct 29.
9
Application of Mouse Models to Research in Hearing and Balance.
J Assoc Res Otolaryngol. 2016 Dec;17(6):493-523. doi: 10.1007/s10162-016-0589-1. Epub 2016 Oct 17.
10
Sculpting the labyrinth: Morphogenesis of the developing inner ear.
Semin Cell Dev Biol. 2017 May;65:47-59. doi: 10.1016/j.semcdb.2016.09.015. Epub 2016 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验