Chaudhary Ruchi, Quagliata Luca, Martin Jermann Philip, Alborelli Ilaria, Cyanam Dinesh, Mittal Vinay, Tom Warren, Au-Young Janice, Sadis Seth, Hyland Fiona
Thermo Fisher Scientific, Waltham, Massachusetts, USA.
Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland.
Transl Lung Cancer Res. 2018 Dec;7(6):616-630. doi: 10.21037/tlcr.2018.08.01.
Tumor mutational burden (TMB) is an increasingly important biomarker for immune checkpoint inhibitors. Recent publications have described strong association between high TMB and objective response to mono- and combination immunotherapies in several cancer types. Existing methods to estimate TMB require large amount of input DNA, which may not always be available.
In this study, we develop a method to estimate TMB using the Oncomine Tumor Mutation Load (TML) Assay with 20 ng of DNA, and we characterize the performance of this method on various formalin-fixed, paraffin-embedded (FFPE) research samples of several cancer types. We measure the analytical performance of TML workflow through comparison with control samples with known truth, and we compare performance with an orthogonal method which uses matched normal sample to remove germline variants. We perform whole exome sequencing (WES) on a batch of FFPE samples and compare the WES TMB values with TMB estimates by the TML assay.
In-silico analyses demonstrated the Oncomine TML panel has sufficient genomic coverage to estimate somatic mutations with a strong correlation (r=0.986) to WES. Further, in silico prediction using WES data from three separate cohorts and comparing with a subset of the WES overlapping with the TML panel, confirmed the ability to stratify responders and non-responders to immune checkpoint inhibitors with high statistical significance. We found the rate of somatic mutations with the TML assay on cell lines and control samples were similar to the known truth. We verified the performance of germline filtering using only a tumor sample in comparison to a matched tumor-normal experimental design to remove germline variants. We compared TMB estimates by the TML assay with that from WES on a batch of FFPE research samples and found high correlation (r=0.83). We found biologically interesting tumorigenesis signatures on FFPE research samples of colorectal cancer (CRC), lung, and melanoma origin. Further, we assessed TMB on a cohort of FFPE research samples including lung, colon, and melanoma tumors to discover the biologically relevant range of TMB values.
These results show that the TML assay targeting a 1.7-Mb genomic footprint can accurately predict TMB values that are comparable to the WES. The TML assay workflow incorporates a simple workflow using the Ion GeneStudio S5 System. Further, the AmpliSeq chemistry allows the use of low input DNA to estimate mutational burden from FFPE samples. This TMB assay enables scalable, robust research into immuno-oncology biomarkers with scarce samples.
肿瘤突变负荷(TMB)是免疫检查点抑制剂越来越重要的生物标志物。最近的出版物描述了高TMB与几种癌症类型中单一免疫疗法和联合免疫疗法的客观反应之间的强关联。现有的估计TMB的方法需要大量的输入DNA,而这并不总是能够获得。
在本研究中,我们开发了一种使用Oncomine肿瘤突变负荷(TML)测定法,以20 ng DNA估计TMB的方法,并表征了该方法在几种癌症类型的各种福尔马林固定、石蜡包埋(FFPE)研究样本上的性能。我们通过与已知真实情况的对照样本比较来测量TML工作流程的分析性能,并将其性能与使用匹配的正常样本去除种系变异的正交方法进行比较。我们对一批FFPE样本进行了全外显子组测序(WES),并将WES的TMB值与TML测定法估计的TMB值进行比较。
计算机模拟分析表明,Oncomine TML检测板具有足够的基因组覆盖范围,能够估计体细胞突变,与WES具有很强的相关性(r = 0.986)。此外,使用来自三个独立队列的WES数据进行计算机模拟预测,并与与TML检测板重叠的WES子集进行比较,证实了能够以高统计学显著性区分免疫检查点抑制剂的应答者和非应答者。我们发现细胞系和对照样本上TML测定法的体细胞突变率与已知真实情况相似。我们验证了仅使用肿瘤样本与匹配的肿瘤-正常实验设计去除种系变异相比的种系过滤性能。我们将一批FFPE研究样本上TML测定法估计的TMB与WES估计的TMB进行比较,发现相关性很高(r = 0.83)。我们在结直肠癌(CRC)、肺癌和黑色素瘤来源的FFPE研究样本上发现了具有生物学意义的肿瘤发生特征。此外,我们评估了包括肺癌、结肠癌和黑色素瘤肿瘤在内的一批FFPE研究样本的TMB,以发现TMB值的生物学相关范围。
这些结果表明,针对1.7 Mb基因组足迹的TML测定法可以准确预测与WES相当的TMB值。TML测定法工作流程采用了使用Ion GeneStudio S5系统的简单工作流程。此外,AmpliSeq化学方法允许使用低输入DNA来估计FFPE样本的突变负荷。这种TMB测定法能够对免疫肿瘤生物标志物进行可扩展、稳健的研究,即使样本稀缺。