Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States.
The Gene and Linda Voiland School of Chemical Engineering and Bioengineering , Washington State University , Pullman , Washington 99163 , United States.
J Am Chem Soc. 2019 Jan 9;141(1):42-47. doi: 10.1021/jacs.8b09668. Epub 2018 Dec 17.
Commensal microorganisms in the mammalian gut play important roles in host health and physiology, but a central challenge remains in achieving a detailed mechanistic understanding of specific microbial contributions to host biochemistry. New function-based approaches are needed that analyze gut microbial function at the molecular level by coupling detection and measurements of in situ biochemical activity with identification of the responsible microbes and enzymes. We developed a platform employing β-glucuronidase selective activity-based probes to detect, isolate, and identify microbial subpopulations in the gut responsible for this xenobiotic metabolism. We find that metabolic activity of gut microbiota can be plastic and that between individuals and during perturbation, phylogenetically disparate populations can provide β-glucuronidase activity. Our work links biochemical activity with molecular-scale resolution without relying on genomic inference.
肠道中的共生微生物在宿主健康和生理学中发挥着重要作用,但仍面临一个核心挑战,即要详细了解特定微生物对宿主生物化学的具体贡献。需要新的基于功能的方法,通过将原位生物化学活性的检测和测量与负责微生物和酶的鉴定相结合,在分子水平上分析肠道微生物的功能。我们开发了一个平台,利用β-葡糖苷酸酶选择性活性的探针来检测、分离和鉴定肠道中负责这种异生物质代谢的微生物亚群。我们发现肠道微生物群的代谢活性是可塑的,并且在个体之间和受到干扰时,系统发育上不同的群体可以提供β-葡糖苷酸酶活性。我们的工作将生化活性与分子尺度分辨率联系起来,而不依赖于基因组推断。