Suppr超能文献

一种基于探针的方法,用于选择性分离和鉴定肠道微生物组中功能活跃的亚群。

A Probe-Enabled Approach for the Selective Isolation and Characterization of Functionally Active Subpopulations in the Gut Microbiome.

机构信息

Biological Sciences Division , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States.

The Gene and Linda Voiland School of Chemical Engineering and Bioengineering , Washington State University , Pullman , Washington 99163 , United States.

出版信息

J Am Chem Soc. 2019 Jan 9;141(1):42-47. doi: 10.1021/jacs.8b09668. Epub 2018 Dec 17.

Abstract

Commensal microorganisms in the mammalian gut play important roles in host health and physiology, but a central challenge remains in achieving a detailed mechanistic understanding of specific microbial contributions to host biochemistry. New function-based approaches are needed that analyze gut microbial function at the molecular level by coupling detection and measurements of in situ biochemical activity with identification of the responsible microbes and enzymes. We developed a platform employing β-glucuronidase selective activity-based probes to detect, isolate, and identify microbial subpopulations in the gut responsible for this xenobiotic metabolism. We find that metabolic activity of gut microbiota can be plastic and that between individuals and during perturbation, phylogenetically disparate populations can provide β-glucuronidase activity. Our work links biochemical activity with molecular-scale resolution without relying on genomic inference.

摘要

肠道中的共生微生物在宿主健康和生理学中发挥着重要作用,但仍面临一个核心挑战,即要详细了解特定微生物对宿主生物化学的具体贡献。需要新的基于功能的方法,通过将原位生物化学活性的检测和测量与负责微生物和酶的鉴定相结合,在分子水平上分析肠道微生物的功能。我们开发了一个平台,利用β-葡糖苷酸酶选择性活性的探针来检测、分离和鉴定肠道中负责这种异生物质代谢的微生物亚群。我们发现肠道微生物群的代谢活性是可塑的,并且在个体之间和受到干扰时,系统发育上不同的群体可以提供β-葡糖苷酸酶活性。我们的工作将生化活性与分子尺度分辨率联系起来,而不依赖于基因组推断。

相似文献

2
Glucuronides in the gut: Sugar-driven symbioses between microbe and host.
J Biol Chem. 2017 May 26;292(21):8569-8576. doi: 10.1074/jbc.R116.767434. Epub 2017 Apr 7.
3
The Gut Microbiota Impact Cancer Etiology through "Phase IV Metabolism" of Xenobiotics and Endobiotics.
Cancer Prev Res (Phila). 2020 Aug;13(8):635-642. doi: 10.1158/1940-6207.CAPR-20-0155. Epub 2020 Jul 1.
5
Chemical transformation of xenobiotics by the human gut microbiota.
Science. 2017 Jun 23;356(6344). doi: 10.1126/science.aag2770.
6
Gut Reactions: Breaking Down Xenobiotic-Microbiome Interactions.
Pharmacol Rev. 2019 Apr;71(2):198-224. doi: 10.1124/pr.118.015768.
7
Probe-enabled approaches for function-dependent cell sorting and characterization of microbiome subpopulations.
Methods Enzymol. 2020;638:89-107. doi: 10.1016/bs.mie.2020.03.014. Epub 2020 Apr 23.
9
Discovery and Characterization of FMN-Binding β-Glucuronidases in the Human Gut Microbiome.
J Mol Biol. 2019 Mar 1;431(5):970-980. doi: 10.1016/j.jmb.2019.01.013. Epub 2019 Jan 15.
10
Xenobiotics: Interaction with the Intestinal Microflora.
ILAR J. 2015;56(2):218-27. doi: 10.1093/ilar/ilv018.

引用本文的文献

1
Activity-based probes for dynamic characterisation of polysaccharide-degrading enzymes.
Biochem J. 2025 Jul 1;482(13):939-54. doi: 10.1042/BCJ20253060.
2
Obtaining complete and canonical ammonia-oxidizing bacteria through specific labeling and cell sorting.
ISME Commun. 2025 Feb 8;5(1):ycae145. doi: 10.1093/ismeco/ycae145. eCollection 2025 Jan.
3
Discovering microbiota functions via chemical probe incorporation for targeted sequencing.
Curr Opin Chem Biol. 2025 Feb;84:102551. doi: 10.1016/j.cbpa.2024.102551. Epub 2024 Nov 30.
5
Profiling sorghum-microbe interactions with a specialized photoaffinity probe identifies key sorgoleone binders in .
Appl Environ Microbiol. 2024 Oct 23;90(10):e0102624. doi: 10.1128/aem.01026-24. Epub 2024 Sep 9.
7
Proximitomics by Reactive Species.
ACS Cent Sci. 2024 Jun 12;10(6):1135-1147. doi: 10.1021/acscentsci.4c00373. eCollection 2024 Jun 26.
8
Environmental activity-based protein profiling for function-driven enzyme discovery from natural communities.
Environ Microbiome. 2024 Jun 3;19(1):36. doi: 10.1186/s40793-024-00577-2.
10
Chemoproteomic Approaches for Unraveling Prokaryotic Biology.
Isr J Chem. 2023 Mar;63(3-4). doi: 10.1002/ijch.202200076. Epub 2023 Feb 28.

本文引用的文献

1
Inflammasomes make the case for littermate-controlled experimental design in studying host-microbiota interactions.
Gut Microbes. 2018 Jul 4;9(4):374-381. doi: 10.1080/19490976.2017.1421888. Epub 2018 Apr 19.
2
The gut microbiota: a major player in the toxicity of environmental pollutants?
NPJ Biofilms Microbiomes. 2016 May 4;2:16003. doi: 10.1038/npjbiofilms.2016.3. eCollection 2016.
3
Chemical transformation of xenobiotics by the human gut microbiota.
Science. 2017 Jun 23;356(6344). doi: 10.1126/science.aag2770.
4
An Atlas of β-Glucuronidases in the Human Intestinal Microbiome.
Structure. 2017 Jul 5;25(7):967-977.e5. doi: 10.1016/j.str.2017.05.003. Epub 2017 Jun 1.
5
Microbiota and reproducibility of rodent models.
Lab Anim (NY). 2017 Mar 22;46(4):114-122. doi: 10.1038/laban.1222.
6
Metaproteomic strategies and applications for gut microbial research.
Appl Microbiol Biotechnol. 2017 Apr;101(8):3077-3088. doi: 10.1007/s00253-017-8215-7. Epub 2017 Mar 14.
7
Individualized Responses of Gut Microbiota to Dietary Intervention Modeled in Humanized Mice.
mSystems. 2016 Sep 6;1(5). doi: 10.1128/mSystems.00098-16. eCollection 2016 Sep-Oct.
8
Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):E4069-78. doi: 10.1073/pnas.1603757113. Epub 2016 Jun 28.
9
Quinone Methide Signal Amplification: Covalent Reporter Labeling of Cancer Epitopes using Alkaline Phosphatase Substrates.
Bioconjug Chem. 2016 Mar 16;27(3):660-6. doi: 10.1021/acs.bioconjchem.5b00652. Epub 2016 Jan 19.
10
Tools for the Microbiome: Nano and Beyond.
ACS Nano. 2016 Jan 26;10(1):6-37. doi: 10.1021/acsnano.5b07826. Epub 2015 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验