Suppr超能文献

利用海藻处理废水:综述。

Treatment of Wastewater Using Seaweed: A Review.

机构信息

Department of Engineering, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia.

Sustainable Waste-To-Wealth, UTM-MPRC Institute for Oil & Gas, Resource Sustainability Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia.

出版信息

Int J Environ Res Public Health. 2018 Dec 13;15(12):2851. doi: 10.3390/ijerph15122851.

Abstract

Inadequately treated or untreated wastewater greatly contribute to the release of unwanted toxic contaminants into water bodies. Some of these contaminants are persistent and bioaccumulative, becoming a great concern as they are released into the environment. Despite the abundance of wastewater treatment technologies, the adsorption method overall has proven to be an excellent way to treat wastewater from multiple industry sources. Because of its significant benefits, i.e., easy availability, handling, and higher efficiency with a low cost relative to other treatments, adsorption is opted as the best method to be used. However, biosorption using naturally found seaweeds has been proven to have promising results in removing pollutants, such as dyes from textile, paper, and the printing industry, nitrogen, and phosphorous and phenolic compounds, as well as heavy metals from various sources. Due to its ecofriendly nature together with the availability and inexpensiveness of raw materials, biosorption via seaweed has become an alternative to the existing technologies in removing these pollutants from wastewater effectively. In this article, the use of low-cost adsorbent (seaweed) for the removal of pollutants from wastewater has been reviewed. An extensive table summarises the applicability of seaweed in treating wastewater. Literature reported that the majority of research used simulated wastewater and minor attention has been given to biosorption using seaweed in the treatment of real wastewater.

摘要

未经处理或处理不当的废水会大量释放出不需要的有毒污染物到水体中。其中一些污染物具有持久性和生物累积性,一旦释放到环境中,就会成为一个严重的问题。尽管有大量的废水处理技术,但吸附法总体上已被证明是处理来自多个工业源废水的一种极好方法。由于其具有显著的优势,例如相对于其他处理方法更容易获得、处理和更高的效率,同时成本更低,因此吸附被选为最佳的处理方法。然而,利用天然存在的海藻进行生物吸附已被证明在去除污染物方面具有很大的潜力,如来自纺织、造纸和印刷行业的染料、氮、磷和酚类化合物以及各种来源的重金属。由于其环保特性以及原材料的易得性和廉价性,通过海藻进行生物吸附已成为从废水中有效去除这些污染物的现有技术的替代方法。本文综述了利用廉价吸附剂(海藻)从废水中去除污染物的方法。一个广泛的表格总结了海藻在处理废水方面的适用性。文献报道称,大多数研究都使用模拟废水,而对海藻在实际废水处理中的生物吸附作用的关注较少。

相似文献

1
Treatment of Wastewater Using Seaweed: A Review.
Int J Environ Res Public Health. 2018 Dec 13;15(12):2851. doi: 10.3390/ijerph15122851.
3
Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review.
J Environ Manage. 2018 Oct 1;223:215-253. doi: 10.1016/j.jenvman.2018.05.086. Epub 2018 Jun 19.
4
Application of low-cost adsorbents for dye removal--a review.
J Environ Manage. 2009 Jun;90(8):2313-42. doi: 10.1016/j.jenvman.2008.11.017. Epub 2009 Mar 4.
5
6
Removal of heavy metals from aqueous solution by nonliving Ulva seaweed as biosorbent.
Water Res. 2005 May;39(9):1803-8. doi: 10.1016/j.watres.2005.02.020.
7
Potential use of algae for heavy metal bioremediation, a critical review.
J Environ Manage. 2016 Oct 1;181:817-831. doi: 10.1016/j.jenvman.2016.06.059. Epub 2016 Jul 5.
8
Biosorption of heavy metal ions from aqueous solution by red macroalgae.
J Hazard Mater. 2011 Sep 15;192(3):1827-35. doi: 10.1016/j.jhazmat.2011.07.019. Epub 2011 Jul 12.
9
Removal of organotin compounds, Cu and Zn from shipyard wastewaters by adsorption--flocculation: a technical and economical analysis.
Mar Pollut Bull. 2008 Jan;56(1):106-15. doi: 10.1016/j.marpolbul.2007.09.044. Epub 2007 Nov 26.
10
Low cost adsorbents for the removal of organic pollutants from wastewater.
J Environ Manage. 2012 Dec 30;113:170-83. doi: 10.1016/j.jenvman.2012.08.028. Epub 2012 Sep 26.

引用本文的文献

5
High-performance adsorption of methylene blue using novel bio-adsorbent based on sargassum fusiforme.
Heliyon. 2024 Sep 16;10(18):e37949. doi: 10.1016/j.heliyon.2024.e37949. eCollection 2024 Sep 30.
6
Investigating the socioeconomic impacts of sewage spillages on businesses in the Umhlanga Rocks coastline area.
Jamba. 2024 Apr 9;16(1):1602. doi: 10.4102/jamba.v16i1.1602. eCollection 2024.
8
Physicochemical assessment of industrial effluents of Kala Sanghian drain, Punjab, India.
Environ Monit Assess. 2024 Feb 29;196(3):320. doi: 10.1007/s10661-024-12446-z.

本文引用的文献

1
Brown marine macroalgae as natural cation exchangers for toxic metal removal from industrial wastewaters: A review.
J Environ Manage. 2018 Oct 1;223:215-253. doi: 10.1016/j.jenvman.2018.05.086. Epub 2018 Jun 19.
3
Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii.
Food Chem. 2017 Apr 15;221:302-310. doi: 10.1016/j.foodchem.2016.10.066. Epub 2016 Oct 17.
4
Biogas production generated through continuous digestion of natural and cultivated seaweeds with dairy slurry.
Bioresour Technol. 2016 Nov;219:228-238. doi: 10.1016/j.biortech.2016.07.127. Epub 2016 Jul 29.
5
Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater.
J Hazard Mater. 2016 Nov 15;318:587-599. doi: 10.1016/j.jhazmat.2016.07.053. Epub 2016 Jul 25.
6
Bioextraction potential of seaweed in Denmark - An instrument for circular nutrient management.
Sci Total Environ. 2016 Sep 1;563-564:513-29. doi: 10.1016/j.scitotenv.2016.04.010. Epub 2016 May 3.
7
The effects of feedstock pre-treatment and pyrolysis temperature on the production of biochar from the green seaweed Ulva.
J Environ Manage. 2016 Mar 15;169:253-60. doi: 10.1016/j.jenvman.2015.12.023. Epub 2016 Jan 12.
10
Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.).
Food Chem. 2014 Sep 1;158:162-70. doi: 10.1016/j.foodchem.2014.02.101. Epub 2014 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验