Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; Department of Life Sciences, Korea University, Seoul 02841, Korea.
Mol Cell. 2019 Feb 7;73(3):505-518.e5. doi: 10.1016/j.molcel.2018.11.005. Epub 2018 Dec 13.
Microprocessor, composed of DROSHA and its cofactor DGCR8, initiates microRNA (miRNA) biogenesis by processing the primary transcripts of miRNA (pri-miRNAs). Here we investigate the mechanism by which Microprocessor selects the cleavage site with single-nucleotide precision, which is crucial for the specificity and functionality of miRNAs. By testing ∼40,000 pri-miRNA variants, we find that for some pri-miRNAs the cleavage site is dictated mainly by the mGHG motif embedded in the lower stem region of pri-miRNA. Structural modeling and deep-sequencing-based complementation experiments show that the double-stranded RNA-binding domain (dsRBD) of DROSHA recognizes mGHG to place the catalytic center in the appropriate position. The mGHG motif as well as the mGHG-recognizing residues in DROSHA dsRBD are conserved across eumetazoans, suggesting that this mechanism emerged in an early ancestor of the animal lineage. Our findings provide a basis for the understanding of miRNA biogenesis and rational design of accurate small-RNA-based gene silencing.
微处理器由 DROSHA 和其辅助因子 DGCR8 组成,通过加工 miRNA 的初级转录物(pri-miRNAs)起始 miRNA 的生物发生。在这里,我们研究了微处理器以单核苷酸精度选择切割位点的机制,这对于 miRNA 的特异性和功能至关重要。通过测试约 40,000 个 pri-miRNA 变体,我们发现对于一些 pri-miRNAs,切割位点主要由嵌入 pri-miRNA 下茎区的 mGHG 基序决定。结构建模和基于深度测序的互补实验表明,DROSHA 的双链 RNA 结合域(dsRBD)识别 mGHG,将催化中心置于适当位置。mGHG 基序以及 DROSHA dsRBD 中的 mGHG 识别残基在后生动物中是保守的,这表明该机制出现在动物谱系的早期祖先中。我们的发现为 miRNA 生物发生的理解和基于准确小 RNA 的基因沉默的合理设计提供了基础。